";,.'

The Procurement of Softwar e Dependent Systems
Making Systems Reliable through Software Reliability

ISR

=y S

Engineering Techniques

13" MoD R&M Specidists Seminar
April 3-4, 2003

Abbey Hotel
Malvern, Worcestershire, UK

Dr. David E. Peercy
Sandia National Laboratories
Chair, Society of Automotive Engineers G-11SW Committee
PO Box 5800, MS-0638
Albuquerque, New Mexico 87185-0638 USA
505-844-7965
depeerc@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Sandia
National

Presentation Objective

Provide some thoughts and discussion on the

following questions:

What is procurement of a system?

What makes a system software dependent?

What does software reliability have to do with

procurement of a software dependent system?

4. Can you provide me with an example of such a
procurement?

W

April 3-4, 2003

Procurement of Software Dependant Systems 2

}"' Topics

@ Procurement of a Software Dependent System
*» System Procurement and Software Dependence
*» Goals & Objectives of a Software Reliability Program
»» Examples of Software Failures
* Myth: Software Reliability = 1 (can’t fail)
& Software Reliability Program

*» SAE G-11 Software Committee Standards/Guides
* JA1002, “ Software Reliability Program Standard” July 1998.
* JA1003, “ Software Reliability Program Implementation Guide” (2003 Draft)

“* Principles. determine, meet, demonstrate customer requirements
“+ Framework: Plan-Case structure

@ Case Study Example

*»» Aerospace Certification

April 3-4, 2003 Procurement of Software Dependant Systems 3

y System Procurement and

Softwar e Dependence

€ \What is procurement of a system?

“* Buy it with a purchase reguest, support contract
+ Build it through a contractual mechanism and devel opment oversight

€ What makes a system software dependent?

¢+ The system can not meet its requirements without the functionality
provided by the software component

* Dependency ranges from alow level to very high level of criticality

€ What does software reliability have to do with
procurement of a software dependent system?

“* System might fail due to execution of a software fault: impact can
range from low to avery critica

B +so... just how does one address this system failure due to software?

April 3-4, 2003 Procurement of Software Dependant Systems 4

F"

}! Goals and Objectives

Software Reliability Program

Given a system for which you must determine an
approach to software reliability, you should be able to:
@ | dentify important software reliability issues
++ related to the software engineering life cycle, system engineering life
cycle, and the system/software reliability engineering activities
@ Plan for & provide evidence of software reliability

*» Understand methods for acquiring, engineering, and sustaining a
software reliability capability
+» Determine performance-based software reliability reguirements

@ Derive elements of a software reliability program

¢ Characteristics of design for reliability
*»» Characteristics of operational reliability
s Customer-supplier relationships. what’s good enough?

April 3-4, 2003 Procurement of Software Dependant Systems 5

}" Some Questions of Interest

€ Why should software reliability be emphasi zed?
€ How much does software reliability engineering cost?
€ What are software reliability performance measures?

€ In what system engineering phasesis it important to
consider software reliability issues?

€ What are software reliability activities?
€ \Who conducts software reliability activities?

€ What should a customer expect a supplier to provide as
evidence of software reliability?

€ What role does a certification authority play in all this?

April 3-4, 2003 Procurement of Software Dependant Systems 6

;’ Softwar e Failure Examples

http://catless.ncl.ac.uk/Risks

Peter Neumann, Stanford University Professor

RISK site provides avoluminous list of risks, many of which are computer/software related -
primarily interested in security and safety risks;, summaries are provided with links to more detail.

€ Therac 25 Accidents (6), June 1985 - January 1987

€ Airbus A320-211, September 14, 1993

€ Ariane 501 Disaster, June 4, 1996

@ Friendly Fire Deaths, March 2002

€ Air-traffic control software reliability, May 2002

€ Impact of inadequate software testing on US economy, June 2002
€ Army Training Accident, June 2002

€ Questions about New Air-Traffic Computer System, June 2002

€ Software "glitch" Changes the Colour of the Universe, March 2002
€ Fun with Microsoft error messages

April 3-4, 2003 Procurement of Software Dependant Systems 7

1" SAE G-11SW

Softwar e Reliability Program

€ JA1002
+* Published by SAE in 1998
*» Developed by G-11 RMSL Software Committee
+*» Copies avallable from SAE (http//www.sae.org)
+» Basis for some aspects of example case study

€ JA1003

* Implementation guide for JA1002

+»» Many methods and techniques are described along with application
guidance for a software reliability program

*» Status - JA1003 full draft for ballot review by full G-11SW
Software Committee in spring 2003

'] Example Plan and Case Templates

April 3-4, 2003 Procurement of Software Dependant Systems 8

| ;,' Why Set up a Software
Reliability Program?

@ Ensure product reliability meets user needs
» estimate/predict software and integrated system reliability

€ Improve time to market for products

+» detect and prevent propagation of development/support defects
“* Improve test process and reduce extraneous testing time

@ Reduce product cost

+» reduce defects, time to develop, and corrective maintenance
* improve productivity

€ Improve customer satisfaction
+» reduce delivered defects, target specific high priority areas

€ Reduce/mitigate risks

*» target specific high risk functional areas - safety, security
+» reduce likelihood of defects being delivered to the customer

April 3-4, 2003 Procurement of Software Dependant Systems 9

) ;, \ Customer-Supplier-

Certification Authorit

Reqw rements
/I G rmed Evidence for
Confi rmatlon F al t Evaluation
Orm I yCertlflcan on of
/’ Conformance
Vl Product

- _—

Product

with
Certification

Bottom Line
What [software reliability] evidence is appropriate for the product?
How do we know this evidence is good enough?

April 3-4, 2003 Procurement of Software Dependant Systems 10

y Conceptual Framework

Reliability Plan-Case

v [} [} [}
CONCEPT! i |
PROPOSAL PLAN ! l : :
*Organization i | i
«Design Reliability Tasks , DEVELOPMENT |
«Operational Reliability Tasks— ' | |
*Schedule/Deliverables . i PRODUCT] ONE
i i ACCEPTANCE':
| | | _mgm
| | Transition
i | ! OPERATION
| | | &
ng}'/ess L i SUPPPORT
Development Case i i
| v |
! Progress 2 !
i Development Case> \‘i/ In-Service
! Case
; ! Progress 3
i i Development Case
e i g
v | i
Requirements W7 i
Operational Profiles |
PE.?POSAIL gASE t ‘ Design Reliability Evidence
ife Cycle Concep Operational Reliability Evidence
*Operational Profiles Appendices
*Historical Evidence

April 3-4, 2003 Procurement of Software Dependant Systems 11

System Reliability Tasks

System Hardware Hardware Hardware Fabrication| | HWCI Test System
Requirements| [Requirements | Preliminary Detailed Integration
Analysis and Analysis Design Design and Test

Design

f{ Program Review Board Activity Q
|]
Reassign Resources
* |
Design Correction ‘ HW/SW Growth Testing EF

Reallocation Needed J
ReDesign Activity

4
Not O Evaluate Growt

; Progress Evaluation |
HW/SW
System System HW/|} | System HW/ HW/SW Demo Test
Reliability SW *SW Reliability || Reliability 4%
Requirements Reliability Allocations Predictions
Model . Evaluate
Results
Design Activity Assessment Assessment
Report Report

T T
To Pgm Manager To Pgm Manager
Engineering Manager Engineering Manager|

Software Software Software | | Coding | [Component
Requirements | Preliminary Detailed | jand Unit| | Integration

Analysis Design Design Test Test SWCI Test

April 3-4, 2003 Procurement of Software Dependant Systems 12

| ;,' Bottom Line Objective

Reduce Programmatic Risk

@ Program Decision Process
“» Defect tracking/reliability tracking supports phase/iteration completion
decision
» Defect tracking/reliability supports prioritization of activities
@ Program Key Progress Parameters
“» Defect tracking/reliability supports schedule progress estimation
+ Early defect removal supports higher likelihood of meeting schedule

@ Program Key Cost Parameters
“» Defect tracking/reliability supports effort estimation

*» Early defect removal means |less rework in later phases
 factor of 10 by phase in effort to remove defects

€ Program Quiality Indicator
s+ Defect tracking/reliability provides akey indicator of product quality

April 3-4, 2003 Procurement of Software Dependant Systems 13

},' Bottom Line Objective

| mprove Customer Satisfaction

@ Customer Issues
*» Performance - Reliability/Meets Customer Expectations
*» Schedule- On Time
» Effort - Within Budget
*» Risk - Managed for Change

April 3-4, 2003 Procurement of Software Dependant Systems 14

}’I To Summarize

Software reliability program provides:

& Customer Focus

 balances customers' reliability needs with their desire for functionality, low
cost, and timely delivery

€ Planning

+* identifies which methods are used for defect prevention, detection, and
removal throughout the life cycle in order to understand where defects are
introduced and determine where failures might be triggered

& Case Evidence

» measures of defects and failures with respect to prevention, detection, and
removal throughout the life cycle

» confidence level that the software will not contribute to any system failures
over a specified time and specified operational use

April 3-4, 2003 Procurement of Software Dependant Systems 15

}’I Backup Slides

€ Terminology (Rdiability, Failure/Fault/Error)

€ Software Failure Categories (RTCA DO178)

€ System HW/SW Reliability Program Relationship
@ Design for Reiability Focus

@ Defects. across life cycle, release defect density; tracking defects,
delivered defects

¢ SEl CMM Level, Example Methods, FMECA/FTA/FRACAS

€ Operationa Reliability Focus, Failure Intensity, Reliability Growth
Model

€& System/softwarereliability integration, HW/SW Reliability (AND,
OR), Smple Exercise

& Software Reliability Model (Musa), Equations, Simple Example
€ References

April 3-4, 2003 Procurement of Software Dependant Systems 16

Case Study in Softwar e Reliablility

}’ Case Study Objectives

@ Define “Simple” Software Reliability Plan
¢+ Customer and Supplier Viewpoint/FAA Certification Context
*» Define Elements of Software Reliability Plan
“» Design Activities
% Test Activities
» Certification Activities
*» Operational Activities
s+ Support Activities

@ Provide Hypothetical Software Reliability Case

*» Design Defect Data and Analysis
*» Test Defect Data and Predicted Reliability

** Operational FRACAS data gathering and Estimated Reliability
Growth

s+ Support Block Releases with Updated Reliability Predications

April 3-4, 2003 Procurement of Software Dependant Systems 18

y Example IMA System With

Hardwar e Elements
@ Integrated Modular Avionics (IMA) hardware element

COCKPIT COCKPIT COCKPIT COCKPIT
DISPLAY DISPLAY DISPLAY DISPLAY
b } b b
4
A y
COCKPIT CONTROLLER
CONTROLLER
CABINET #1 CABINET #2 7y
--
v i Y
> w " > w
- O] 1 - Q
& w ém X w W g w :8 2w ém £ w w | Sw
= = | - 4 | - p i o | &3
83 = 05| oD | 03 = 83 a3 (k=) 0D] 965
x| 50| 32| =0 | Ko o Q| 32 20| =0 | Ko
£918¢(58 |78 |28 ik| 1| B 28|58 T8 g8
HLHE S s
la) a a
______________________ S SR A A
SENSORS, < L——» | SENSORS,
ACTUATORS, P R ACTUATORS,
OTHER SYSTEMS | » | OTHER SYSTEMS

€ “Load Control (LC)” software programisin a PROM
In the Processor Module

“* purposeisto load operational software into the Processor Module

and ensure load is compl eted successfully
April 3-4, 2003 Procurement of Software Dependant Systems 19

}»‘ IMA Assumptions

€ IMA Inc is Supplier/Manufacturer
% Delivers complete IMA - hardware element including Load Control SW

** Focusfor this case study is on the Load Control software program delivered
as part of the IMA element that enables the Processor Module to be loaded
with operational software

& NSIA Air is Customer

s+ Establishes contractual relationship with IMA, Inc to receive IMA units for
aircraft system integration during production builds

“ Accepts IMA product in accordance with contractual acceptance criteria

+ Performs appropriate systems integration, checkout, and flight testing during
system design and production/manufacturing process

@ FAA is Certification Authority
+»» Certifiesto Technical Standard Order TSO-C153, IMA Hardware Elements

 Includes certification of the Load Control software to DO-178B requirements and alternative
elements in accordance with the Certification Authorities Software Team (CAST)
publication [CAST5-00] “Guidelines for Proposing Alternate Means of Compliance to DO-
178B,” June 2000.

April 3-4, 2003 Procurement of Software Dependant Systems 20

\

NSIA Air and IMA.,Inc Roles

& NSIA Air Customer

“* Requires certification by FAA (HW and SW)
* Per TSO-C153

— |If software to enable future software loading and/or electronic part marking isincluded in the
hardware element, the software level applied under this TSO must be commensurate with the
installation safety assessment and documented in the installation procedures and limitations.

e Per RTCA DO178B for Load Control software

— Plan for Software Aspects of Certification (PSAC), Software Configuration Index, and Software
Accomplishment Summary

» Per Various FAA Guidelines and CAST position papers (e.g., CAST-5, Alternatives)
“* Requires certain Key Performance Parameters be met

» Per contractual agreement between NSIA Air and IMA

 OneKPPisIMA reliability performance allocated to Load Control software
— Requires evidence of how the software reliability has been integrated into the KPP

* Requires Supplier Survey to review certification evidence & how the KPPs have been met

€ IMA Contractor

*» Develops and Supports IMA product; uses Product Service History data

+»» Coordinates with the NSIA Air contact at Aircraft Certification Office
(ACO) — part of FAA Certification Authority

e ObtainsIMA certification - including Load Control software

[< CompletesNSIA Air Supplier Contractual Requirements - Survey

» Specificaly, provides SW reliability case evidence as part of the SW verification plan
April 3-4, 2003 Procurement of Software Dependant Systems 21

' L oad Control Software
Cconcept

@ Initia delivery of the IMA unit

“* Load Module software package in a PROM chip within the Processor
Module.

“* IMA Processor Module designed for operational software replacement;
design is double NVRAM memory concept; initial operational softwareis
loaded into NVRAM location #1; subsequent updated operational

software isloaded into “other” NVRAM location.

» First updated version of operational software isloaded by the Load Module software into
NVRAM location 2 when activated by an externa command to the Processor Modul €
next updated version isloaded in NVRAM location 1, and so forth.

% When activated, the Load Module software
» authenticates the new operational software using digital signature technology

» |oadsthe authenticated software into the “other NVRAM location” and switches the
“active location” for the software to this NVRAM location.

» if load is successful sends “successful” message to the “externa controller”

 if load is not successful, the “active location” is not changed and a “failed” message with
applicable reason is sent to the “external controller”

April 3-4, 2003 Procurement of Software Dependant Systems 22

}"I Assumptions

& Load Control Software Level is“A”

*» New functional design using digital signature technology
+» Security and Safety concerns

+» Functional importance of the Processor Module in relation to the IMA
unit isconsidered to be Level A

@ L oad Control Software Estimates
» Requirements specification(~35 pages)
+»» Design specification (~100 pages)
¢+ Source code is ~5,000 non-commented source lines of code (ncsloc)
of C++ and around 17 function points

V&V plan and results (combined, ~200 pages)

+*» Plan for Software Aspects of Certification/Qualification (~40 pages)
+» Software Accomplishment Summary (~20 pages)

¢ Technical Order for Field User Guidance (~40 pages)

April 3-4, 2003 Procurement of Software Dependant Systems 23

e '
}’ Determine FAA | nvolvement

[>] @ Leve of FAA Involvement (LOFI) - MEDIUM

% Step 1. Software isassessed at Level A
* Level Of FAA Involvement (LOFI) isHigh or Medium

% Step 2: Complete Other Relevant Criteria
» Total Score Result (TSR) = 141, so LOFI istentatively set at Medium
% Step 3: Any Exceptions?
» Software project has no issues that require new FAA policy, so LOFI is set at Medium

@ Strategy Notes

* For Plan for Software Aspects of Certification (PSAC), include software
reliability planning information matrix in general format for software
reliability plan - reference more detailed mapping of DO178B appendices
to the Plan

“» For V&V Plan, use software reliability matrix evidence (reference details
elsewhere) and general format for software reliability case - reference
more detailed mapping of DO178B appendices to the Case

*» For Software Accomplishments Summary (SAS), use summary per NSIA
Air acquisition contract so as to satisfy both the FAA Certification and
NSIA Air - the ultimate user

April 3-4, 2003 Procurement of Software Dependant Systems 24

Approach

| ;" NSIA Air Acquisition

@ Acquisition Contract

*» Graded Formality Based on LOFI

+ Certification Requirements, with caveats to include software
reliability evidence as part of V&V evidence

*» Key Performance Parameters Evidence - focus on software
reliability assessment

“» Supplier Survey Expectations - complete customer verification of
al evidence

+» Schedule, cost profiles based on estimated 5,000 ncsloc C++
» 26 person months, ~$300K, 18 months

April 3-4, 2003 Procurement of Software Dependant Systems 25

e '
}’ Plan Elements

@ Life Cycle Activities
% System: FMEA, FTA, Rdliability Allocation
+«» Software Reliability allocation = 0.90 per execution hour, which
corresponds to approximately 2500 flight hours between

operational software updates (which would involve execution of
the Load Control software for approximately 15 seconds)

[>] @ Plan Matrix

*» Columns:
» Lifecycleactivity, Reliability Activity, Claim, Evidence, Rationale,
References to Details
* Rows;
* Requirements, Design, Code, Unit test, System/integration test, FAA
Certification, NSIA Air Review Activities

April 3-4, 2003 Procurement of Software Dependant Systems 26

\

Case Elements

@ Specific Details of Life Cycle Analysis

“ Inspection Data (defects, person hours, source of defects, estimate of defect removal efficiency)
+ Testing Data (unit coverage, integration/system defect/operational time)
% Software Reliability KPP
» defect removal efficiency estimate (req,des,code,other)
» predicted defect delivery (based on Neufelder)
» estimated defect delivery (based on integration/system testing data) - Motorola demo
» estimated operational failure rate (based on reliability growth model-Motorola)
% FAA Certification Involvement
* Reviews
* Anaysis
* Certification Approval

April 3-4, 2003 Procurement of Software Dependant Systems 27

Example Inspection Data

Review/ Size Total # Major Total Major #Magjor #Magjor #Magjor #Magjor
Test Defects Defects Person Defect Source Source Source Source
Activity Hours Density SRS SDD Code SVP
SRS 30 pages 75 12 30 0.16 12 0 0 0
SDD 90 pages 123 45 40 0.37 4 41 0 0
Code 4500 158 72 112 16.0 4 6 62 0
ncsloc
SvP 190 122 60 80 0.31 1 7 15 37
pages
Totals N/A 364 59 262 N/A 21 54 77 37
DRE 0.57 0.76 0.81 1.00
Known
Prior to
Test

April 3-4, 2003 Procurement of Software Dependant Systems 28

"';,'

Example Inspection Data
with Results of Testin

Review/| Size | Tota #| Magor Totd Major #Magjor #Magjor| #Maor| #Maor| #Maor| #Maor
Test Defects| Defects| Person| Defect Source Source| Source| Source| Source| Source
Activity Hours | Density SRS SDD | Code | SVP | Unit Sys
Test Test
SRS 30 75 12 30 0.16 12 0 0 0 0 0
pages
SDD 90 123 45 40 0.37 4 41 0 0 0 0
pages
Code 4500 158 72 112 16.0 4 6 62 0 0 0
ncsloc
SVP 190 122 60 80 0.31 1 7 15 37 0 0
pages
Totals N/A 364 59 262 N/A 21 54 77 37 0 0
DRE 0.57 0.76 0.81 1.00 0 0
Known
Prior to
Test
Unit 4500 78 27 250 5.55 1 4 18 2 2 0
Test ncsloc
SysTest| 4500 84 57 25.0 12.67 1 11 31 2 6 2
ncsloc
DRE 0.52 0.59 0.55 0.95 0.25 1.00
Known
After
Test

April 3-4, 2003

Procurement of Software Dependant Systems

29

=~

Example System/I ntegration
Test Data

Test Phase Failures Failures Execution MDefects M Defects M Defects MDefects M Defects MDefects

(Total) (Major) Test Time Source Source Source Source Source Source

SRS SDD Code SVP UnitTest SysTest
SysTestl 25 15 0.5 2 2 8 1 1 1
Sys Test2 15 12 0.5 1 1 6 1 2 1
Sys Test3 11 10 1.0 0 2 7 0 1 0
Sys Test4 10 8 2.0 1 1 4 0 2 0
Sys Tests 7 3 1.0 0 1 2 0 0 0
Sys Test6 10 5 3.0 0 1 4 0 0 0
Sys Test7 4 3 5.0 0 0 3 0 0 0
Sys Test8 1 1 7.0 0 0 1 0 0 0
Sys Test9 1 0 5.0 0 0 0 0 0 0
Totals 84 57 25.0 4 8 35 2 6 2

April 3-4, 2003 Procurement of Software Dependant Systems 30

Activit

i" Plot of Defect Data by

140

120+

100+

80+

@ M ajor Defects

20

Req Des Code Test Unit Sys Sys Sys
Plan Test Testl Test2 Test3

April 3-4, 2003 Procurement of Software Dependant Systems 31

Example Defect Removal
Efficienc

@ Defect Removal
Efficiency

Reqg Des Code Test Unit Sys Sys Sys
Plan Test Testl Test2 Test3

Note: this“efficiency” isjust in removing potential defectsin the artifact being reviewed or tested

April 3-4, 2003 Procurement of Software Dependant Systems 32

r;" Example Reliability

Calculations
@ Predicted Delivery Defect Density [Neufelder]

“ Process Score = X = sum of scores on 125 parameters (~1400 to 2800 range)
» Predicted Delivered Defect Density per KNCSLOC(assembler) =D,
» D, =0.00000017* X2 —0.00100439* X + 1.58463875

» D, =a* D, = predicted delivered defect density in KNSLOC for language
“L”; a=~7for C++

¢ Assuming for IMA, the process score X = 2330 (LOFI based) we compute:
« D,=0.16732 D, =7* 0.16732=1.1713

€ Converting to Reliability
“* N, = Inherent # delivered defects = D, ,*4.5 = ~5.27

< Q = Ratio between N, and failures per time based on historical data/testing
data (~0.254 for IMA testing) = ~ 20.75

A(t) = N, * exp(-Q*t/ Ny) /t=5.27 * exp (-20.75t/5.27)/t

R(t) = exp (- At)

Fort=1cpu hr, A(t) =5.27 * exp (-20.75/5.27) = ~0.103

R = exp (-0.103) = ~0.902 — which would meet the reliability goal of 0.90

L)

L)

L0

4

)

L)

4

L)

L)

S

%

*e

*%

S

%

S

%

Neufelder, “The Naked Truth About Software Engineering in the Semiconductor Equipment Industry-Revision 3,” 2002 published by SoftRel

April 3-4, 2003 Procurement of Software Dependant Systems 33

1"

Example Reliability
Calculations

+ Using the Test Data afew slides back

@ Predicted Delivery Failure Rate [Musa)

Test Phase Failures Failures Execution Test Time
(Total) (Major)

SysTestl 25 15 0.5
Sys Test2 15 12 0.5
SysTest3 11 10 1.0
SysTest4 10 8 2.0
Sys Test 7 3 1.0
Sys Testé 10 5 3.0
Sys Test7 4 3 5.0
Sys Test8 1 1 7.0
Sys Test9 1 0 5.0
Totals 84 57 25.0

“* Need to have two estimated values
 Initial failurerate: A, (useinitial test data: 15/0.5 = 27 per cpu hour
 Total expected failures (System test + Operational Use: vV, ~60)

April 3-4, 2003

Procurement of Software Dependant Systems

34

Calculations

@ Predicted Delivery Failure Rate [Musa]
“* Ao =30 per cpu hour; Vo = 60; t =25 cpu hr

@ At) = Ag* exp [- (A\y/ Vg)*25] = 30*exp[-(30/60)* 25] = 0.000112
*» Fort=1hr, R =exp (- At) = exp (-0.000112) = 0.999888

[¢ Simple Motorola Model

+*» Build data set to match test data

*» Check out /MTTF (delivered failure rate)
+*» Check out graphs

+*» Check out correlation/confidence

¢ Comparison with Musa Model results

F}" Example Reliability

April 3-4, 2003 Procurement of Software Dependant Systems 35

F;" FRACAS and Support Data

Collection

@ Development Transitions to In-Service Support

Design :') Testing FRACAS Delivered
Product
Prediction & I Path Demonstrated
Complexity Assessment Reliability & Growth

Basic SW Reliability Process

Deiie parametens,
estublish REM plan, T
/ A ﬂ‘{’/ x \‘m A A

H =50 Progotype Prosliscivom
irileggration

concepl et
s

Phases ot a Software development program

April 3-4, 2003 Procurement of Software Dependant Systems 36

y FRACAS and Support Data

Collection

¥ FRACAS Data Collection Supports a Sustained
Reliability Program During In-Service
@ Establishes a Service History Record

Estimated R at Block 1 release

=z

Effect of added code Failure rate without new
design or specification

Rk 1 RIk 2 | RIk 3 | RIk n

Time - hours

April 3-4, 2003 Procurement of Software Dependant Systems 37

}?j FAA and NSIA Air Reviews

@ Initial Review
“» PSAC Plan Matrix
“* NSIA Air negotiation for reliability planning information
“* NSIA Air supplier survey for “Top 10 practices’

e |Information from ASE assessment of software level and other criteria
acceptable

@\ erification Reviews
¢ Ingpection Data
* Testing Data
“ Rdiability Data
+* NSIA Air check of KPP
& Final Certification Review
* SAS
+» Certification Approva

April 3-4, 2003 Procurement of Software Dependant Systems 38

}’I Case Study Summary

€ Customer

% Select Acquisition Approach based on Graded Formality

> Determine Formality based on FAA LOFI Guidance

» Piggyback on Certification Evidence

% Consider breadth of life cycle data as software reliability evidence

@ Supplier
“* Negotiate with customer(s) concerning requirements
* Determine, meet, demonstrate

“» Use framework of Certification Plan (PSAC) and Case (SVP, Verification
Test) augmented by Software Reliability Plan/Case evidence as

appropriate
@ Certification Authority
“* May be Customer, May be FAA

% DO-178B is primarily a qualitative process assessment, should augment
evidence with additional safety and reliability evidence for critical
applications

“» FAA Guidelines provide steps, but tailoring is recommended

L)

)

L0

&

L)

L)

4

April 3-4, 2003 Procurement of Software Dependant Systems 39

Discussion Q& A

€ The Floor is Open! Thoughts, Questions?

*» How can illustrated case study approaches be used in your
applications?

*» Which methods seem to be applicable to your work?

** What are the Cost implications?

Customer Supplier

Certification Authority

April 3-4, 2003 Procurement of Software Dependant Systems 40

}’I Backup Slides

€ Terminology (Rdiability, Failure/Fault/Error)

€ Software Failure Categories (RTCA DO178)

€ System HW/SW Reliability Program Relationship
@ Design for Reiability Focus

@ Defects. across life cycle, release defect density; tracking defects,
delivered defects

¢ SEl CMM Level, Example Methods, FMECA/FTA/FRACAS

€ Operationa Reliability Focus, Failure Intensity, Reliability Growth
Model

€& System/softwarereliability integration, HW/SW Reliability (AND,
OR), Smple Exercise

& Software Reliability Model (Musa), Equations, Simple Example
€ References

April 3-4, 2003 Procurement of Software Dependant Systems 41

}’I Terminology

@ Operational Profile

* the set of functions a computer program is required to perform - further
broken down by input data when it affects execution - along with the
probabilities of occurrence

& Failure Intensity:

+* the number of failures occurring in a given time period (e.g., 1000 CPU
hours, 1000 calendar hours)

@ Fault Density:

“+ number of faults per unit; unit might be source lines of code, function
points, components, etc.

April 3-4, 2003 Procurement of Software Dependant Systems 42

I Failure, Fault, Error Concept
W

Execution Time .

Ul
e N Fault
Q
V,
\V/ O
w, o
“Fault.
X3
X 3
U, VvV,W, X Runs
1,2,3 Discrepancies (variation of expected from actual)
U,V,, W,, X, Failures (discrepancy that does not satisfy user requirement)

43

April 3-4, 2003 Procurement of Software Dependant Systems

' Softwar e Failure
Severity Categories(RTCA/DO178B

Category Severity Description
1 Catastrophic Failure conditions which would prevent continued safe flight
and landing.
2 Hazardous/Severe | Failure conditions which would reduce the capability of the
-Major aircraft or the ability of the crew to cope with adverse operating

conditions to the extent that there would be:

- large reduction in safety margins or functional capabilities

- physical distress or higher workload such that the flight
crew could not be relied on to perform their tasks accurately
or completely

- adverse effects on occupants including serious or
potentially fatal injuries to a small number of those

occupants
3 Major ditto intro statement asin #2
- significant reduction in safety margins or functional
capabilities

- significant increase in crew workload or conditions
impairing crew efficiency

- discomfort to occupants, possibly including injuries

4 Minor Failure conditions which would not significantly reduce aircraft

safety, and which would involve crew actions that are well

within their capabilities. "Slight" rather than "significant"

5 No effect Failure conditions which do not affect the operational

capability of the aircraft or increase crew workload.
April 3-4, 2003 Procurement of Software Dependant Systems 44

;,'

Top Ten Practices
Correlated to Defect Density

Neufelder has devel oped a predictive model with 125 devel opment practices
correlated to lower delivered defects. [NEUFELDER]

Practice Corrdationto | Phaseof SW
Defect Dendty LifeCyde

All requirements are mapped to sysemtests -0.891739 Requirements
Requirements are reviewed before desgning or coding -0.851721 Requirements
Sysemtest bedsare usd -0.847479 Teding
Tedt plan darted a least one phase of thelife cycle before -0.823243 All upto
tesing begins tesing
Tedersuse aFRACAS (defect tracking system) to determine -0.806090 Teding
whet to ted/retest
All upgrades mede efter asygemtes are regresson tested -0.782629 Maintenance
Corrective action releases per year <=4 0.777758 Maintenance
All modifications mede after asysemtest are regresson tested 0.773434 Teding
FRACAS used for tracking dl corrective actions -0.746663 Maintenance
Wak-thrus are parformed for dl phases of lifecyde -0.743187 All phases

April 3-4, 2003

Procurement of Software Dependant Systems

45

gl '
}’ Design for Reliability Focus

€ |mprove Software Design Characteristics

 the set of attributes that bear on the capability of software to maintain its
level of performance under stated conditions for a stated period of time

€ Implement System and Software Engineering Practices

% life cycle activity defect reduction and prevention
e requirements, design, implementation, test, operation, support

% process improvement to reduce likelihood of product defects
* SEI SW-CMM, Software Capability Maturity Model
» |SO SPICE, Software Process Improvement Capability Determination
» Practice standards and guidelines: Software Reliability Plan and Case
» Software Operationa Reliability Engineering Program

@ Track Design Measurement Defect Data

“* inspection defect data

% defect density

* percentage defect removal efficiency for each life cycle phase

April 3-4, 2003 Procurement of Software Dependant Systems 46

F;I' Defects & Failures per Unit Time

Acrossthe Life Cycle

Defects per Unit Time
&
Major Defect/ Fallures per Unit Tire
Unit Time (hrs)
4
3
2
1
Reqg Design Code Test Bl B2 B3 B4 B5

| nspection Process Test / Operational Process

The biggest challenge of software reliability today is to adequately correlate design for reliability
parameters with operational reliability in a predictive manner.

April 3-4, 2003 Procurement of Software Dependant Systems 47

Defect Density by Release

@ Defects Over Time - Defect Tracking
«» Example: Tracking Defect Density by Release over Time

5.0—

4.0

Defects
per

K lines 30—

of code

20—

1.0

90 91 JZ 93 94

April 3-4, 2003 Procurement of Software Dependant Systems 48

1" Tracking Defects and

Problems

@ Defects Over Time - Defect Tracking

*» Example: Cumulative Defects

Number
of
Defects

Number
of
Problems

April 3-4, 2003

Total Defects

Residual Defect Defects Discovered

Test Time

Problems Discovered
" Closed Problems

.. Open Problems

Project/Iteration Time

Procurement of Software Dependant Systems 49

\

Delivered Defects

@ Defects Over Time - Defect Tracking

*» Example: Tracking Delivered Defects by Maturity Level [JONES]

SEL CMM RTCA DO178B Injected Delivered
Level Level DefectssKSLOC DefectssKSLOC
5 A 7.8 0.39
4 B 15.6 1.09
3 C 31.2 21
2 D 62.4 34
1 E 124.8 5.8

*» Example: Defect Removal Efficiency by Life Cycle Activity

Defect Removal Activity
Informal design reviews
Formal design inspections
Informal code reviews
Formal code inspections
Unit test
New function test
Regression test
Integration test
System test
Low-volume Betatest (< 10 clients)

High-volume Beta test (> 1000 clients)
April 3-4, 2003

Defect Removal Efficiency
25% to 40%
45% to 65%
20% to 35%
45% to 70%
15% to 50%
20% to 35%
15% to 30%
25% to 40%
25% to 55%
25% to 40%

60% to 85%
Procurement of Software Dependant Systems

All Phases Total:
Military Average: 0.96
System Software: 0.94

Commercia Software: 0.90
MIS: 0.73

50

, ;,' SEl CMM Leve

Defect & Effort Data Relationshi

Effort in
Maturity Calendar Person Defects Defects Total $
Level Months Months Found Shipped Median Case
I 29.8 593.5 1348 61 $5,440K
I 18.5 143.0 328 12 $1,311K
1 15.2 79.5 182 7 $ 728K
AV 12.5 42.8 97 5 $ 392K
Vv 9.0 16.0 37 1 $ 146K
Krasner Consulting, 1991, typical 200 kncsloc project

Message: the higher the maturity level, the more cost
effective and reliable the delivered software product.

NOTE: RTCA DO178B Levelsof A, B, C, D, E correspond (for a

project) roughly to the SEI maturity levelsV, IV, |11, 11, |

April 3-4, 2003 Procurement of Software Dependant Systems

\

Example Methods & Techniques*

|. Analysis Techniques Il. Design Techniques lll. Verification Techniques
change impact analysis block recovery boundary value analysis
common cause failure analysis degraded mode operations cleanroom

formal scenario analysis defensive programming equivalence class partitioning
FRACAS diversity formal code inspections (Fagan)
Petri nets error detection/correction functional testing

reliability block diagrams fault tolerant design interface testing

reliability estimation modeling information hiding peerreviews

response time, memory, reliability allocation performance testing
constraint analysis design by contract probabilistic testing

FMECA regression testing

ETA reliability growth testing
sneak circuit analysis root cause analysis

stress testing

testability analysis, fault injection,
failure assertion

usability testing

* - JA1003, “ Software Reliability Program Implementation Guide,” SAE G-11SW Draft, July 2002.

April 3-4, 2003 Procurement of Software Dependant Systems 52

i
}’i Software FMECA/FTA/FRACAS

€ FMECA

¢ Proactive approach used for determining the potential failure
modes of a system/equipment (including software), all likely ways
In which a component or equipment can fail, causes for each
failure mode, and effects/criticality of each failure mode.

®FTA

“* An extension of the FMECA activity in that the identified potential
system failure modes are analyzed in terms of what potential faults
(single point of failure) or multiple faults (multiple points of
failure) might result in the potential system failure mode

®FRACAS

++ Reactive approach used for tracking failures and determining the
real failure modes of the system/equipment through root cause
analysis.

April 3-4, 2003 Procurement of Software Dependant Systems 53

%‘ Operational Reliability Focus

€ | mprove Software Operational Performance

+* the probability that software will not cause the failure of a system
for a specified time under specified environment conditions

€ |mplement Software Operational Reliability
Engineering Program
+» Tallor program to application domain and organization

*» Reliability-based test architecture: operational profiles

+» Reliability-based measurement: defect collection, analysis during
test, operation, and support; failure rates, confidence limits

+» Reliability-base risk decision system: when to ship, risks

@ Apply Software Reliability Methods

*» System reliability allocation and prediction
+» Software reliability estimation (data) and prediction (models)

April 3-4, 2003 Procurement of Software Dependant Systems 54

\

Failure Intensity

@ Failure Intensity
“+ The number of failures occurring in a given time period
“» Example: 1 failure per 1000 operational hours

Failure Observed Failures in Each Time Interval
Intensity | (Failures/Unit Time or Failure Intensity)

-7

NOTE: assumesdefectsarebeing removed over time

\ Prediction Model

| | N
Current Failure Intensity .. L.1.1..1.1.IN
N

Failure Intensity Objective L. 1.1.1.1.1. \\

Program Execution Time (Cumulative)

April 3-4, 2003 Procurement of Software Dependant Systems 55

1»‘ Reliability Growth Model

@ Reliability Growth Model

“ the probability of failure-free operation in a specified environment for a
specified period of time [MUSA]

** example: Exponential

M (1) At)

K@®)= Vv, [1- expl- NgVoI] A= A, expl- A N

Reliability = e

April 3-4, 2003 Procurement of Software Dependant Systems 56

y System/Softwar e Reliability

| ntegrating SW and HW
@ Step 1. Block Diagram

+*» Divide system into block components for reliability analysis

& Step 2: Allocation

*» Allocate system reliability objectives to components by operational
scenarios

* Allocate to HW/SW components using parallel/series models

@ Step 3: Predication
¢ Conduct trade-offs with HW/SW to determine best approach to
meeting reliability allocations

*» Select/develop HW/SW components to satisfy reliability
allocations; use fitted data models for estimation and reliability
growth models for prediction

April 3-4, 2003 Procurement of Software Dependant Systems 57

gl
| p' Combining HW/SW Components

to Compute Rdiability

€ Computational Component

s+ Component with both hardware and software parts of which the
software part may be composed of non-developmental and newly
developed parts

+*»» Component parts are considered to be serial elementsfor reliability
computation purposes, if any part fails, the component fails

“» More compli version nstructed
- —Software Configuration ltem— — — —
| |
| |
| |
Hardware | Non- Newly |
Configuration i » Developmental » Developed \
ltem | Software Software |
| |
| |
| |
e

April 3-4, 2003 Procurement of Software Dependant Systems 58

"},_'

€ “AND” Configuration

Combining HW/SW Componentsto
Compute Reliability: “AND” “OR”

“ “AND” part functions only
when ALL components are

functioning: SERIAL

% R=RI*R2*R3*...*Rk

< Example
"AND" Configuration
R1=0.99 R2=0.98
PC (HW) 0S (SW)

R3=0.97

AP (SW)

R =R1*R2*R3=0.99*0.98*0.97 = 0.94

April 3-4, 2003

€ “OR” Configuration

% “OR” part functions when any of
the components are functioning

% R=1-F=1-F1*F2*F3*...*Fk
=1-(1-R1)*(1-R2)...(1-RK)
% Example

"OR" Configuration

RT1=0.99 RT2=0.98 RT3=0.97
T
PC (HW) 0S (SW) AP (SW)
RB1=0.99 RB2=0.98 RB3=0.97
= PC(HW) 0S (SW) AP (SW)

Procurement of Software Dependant Systems

R =[1- FT*FB] = [1 - (1-RT)(1-RB)] =[1-(1-.94)(1-.94)] = [1-0.06*0.06] = [1-0.0036] = 0.996

_ '
}" Simple Example/Exer cise

@ Given Block Diagram for
Automobile Anti-lock

Braking System (ABS)
‘ SuppOse the fOI I OWi ng Brakes 3 Decision Controls
reliability values are HW SUbsysiem oM |_pn| Applcain
kﬂOWﬂ; S . TWobysen SWSibsysen
% R (brakes) = Rb = 094 Sensors _ ‘
& R (presuresnsos =Rz 096 WSk wiSwStesen

< R(PROM)=R= 091
% R (application software) = R.= 0.90

€ Compute System R

R=[1-(1-R,)(1-R)] * Ry * R, =[1-(1-0.94)(1-0.96)] * 0.91* 0.90 = [0.9976]*0.91* 0.90 = 0.8170344

April 3-4, 2003 Procurement of Software Dependant Systems 60

}‘ Softwar e Reliability Models

& History

* 1970s. Jelinski-Morana, Shooman, Schick& Wolverton models
1973 John Musa, Bell Laboratories, began hiswork

% 1980s. Glory years of model research: Littlewood, Godl, etc

% 1990s. Thehard part - trying to apply models & get results

@ |llustrate Musa' s Models

“* Musa Non-Homogeneous Poisson Process Exponential
o Effectivefor System Test use

“* Musa: Non-Homogeneous Poisson Process Logarithmic
» Effectivefor Field Operational use

€ Modeling Cost [MUSA99]
¢+ 0.1-0.2% of project cost
* Includes ALL SRE activity, not just Supportability-specific uses
¢ Includes training, data collection, analysis

April 3-4, 2003 Procurement of Software Dependant Systems 61

\

Model Typesand Equations

Exponential Logarithmic
ﬁ T
Failures Experienced H =v,(1-e Yo) () = _é-_ln()\OGT + 1)
(Expected)
Present Failure Intensity AL = A (1 - H _ 5y O
(Function of Failures) W= Vo) A =Aq €
Present Failure Intensity _ _éT A(T) = A,
(Function of Time) A(T) =A,€ %o A, BT+ 1
Additional Time to Failure Ar= Vg | (A)
Intensity Objective 1= In(= _ 1,1 _1
I y J IV ‘X((JJ—)\F AT - —e— (')\—F)\)

Additional Failures to v
Intensity Objective Ap=Xo (A=A -1

y O] =5 (A —2A) Au—-e—)\vgx\l;’—)
Reliability
(No Failures Corrected) R(T) = e—)\r

April 3-4, 2003 Procurement of Software Dependant Systems 62

Basic Formula Terms

failures experienced (expected)

additional failures (expected)

execution time

additional execution time

initial failure intensity - (must be estimated)
present failure intensity

failure intensity objective

total failures (expected) - (must be estimated)

failure intensity reduction (decay) rate - (must be estimated,
nominal values = .02/failure - .05/failure)

April 3-4, 2003

Procurement of Software Dependant Systems 63

\

Computational Exercise

Giventhat vo=500 Ag=27/nr Ap=15/hr Ag= 0.5/hr and t=10
Compute (Exponential Model)

H(t) =voll—exp[-Agt/vgl] = expected number of current failures experienced at time t
= 500[1-exp [-27* 10/500]] = 208.62587 ~ 209 failures

A(t) = Ag[1- p/vg] = expected failure intensity/rate at the current time t
= 27 [1-209/500] = 15.714 failures per hour at t=10 hours

Ap = [vg/ Mgl [Ap - AF] = expected additional failures to reach failure intensity objective
= [500/27][15 — 0.5] = 268.51852 ~ 269 more failures to reach objective of 0.5/hr

At = [vg/ Ag] In[Ap/AE] = expected additional time to reach failure intensity objective
= [500/27] In[15/0.15] = 62.985137 ~ 63 hours more testing to reach objective of 0.5/hr

April 3-4, 2003 Procurement of Software Dependant Systems 64

-2 e
erer ences

L 4

[DEMARCQO] DeMarco, T., Controlling Software Projects, Y ourdon Inc.,
New York, NY, 1982.

€ [IEEES87] |EEE Standard, “ A Sandard Classification of Software Errors,

Faults, and Failures,” Technical Committee on Software Engineering,
Standard P-1044/D3, December 1987.

€ [JONES] Jones, C., “ Conflict and Litigation Between Software Clients and

Developers,” Version 1 -- March 4, 1996.

€ [LEUNG] Leung, H., “ Improving Defect Removal Effectiveness for Software

®¢ & o o

Development,” Department of Computing, Hong Kong Polytechnic
University.

[LYU] Lyu, M., Software Reliability Engineering, |EEE Computer Society
Press, McGraw-Hill, New York, NY, 1996.

[MUSA] Musa, J., Software Reliability Engineering, McGraw-Hill, New
Your, NY, 1999.

[NEUFELDER] Neufelder Owner, A., N., “ The Facts About Predicting
Software Defects and Reliability,” Journal of the RAC, 2ndQ, 2002, pp 1-4.

[INEUFELDER-LAKEY] Lakey, Neufelder, “ System Software Reliability
Assurance Guidebook,” Rome Laboratory, 1995.

April 3-4, 2003 Procurement of Software Dependant Systems 65

Appendix A

Glossary

April 3-4, 2003 Procurement of Software Dependant Systems

Appendix A: Glossary of Terms 2/21/2003 3:53 PM

Page 2 of 9

Appendix A: Glossary of Terms 2/21/2003 3:53 PM

A. Glossary of Terms
A.1 Primary Acronyms

ATAA
AIR
ANSI
ARMP
ASIC
BSI
CMMI
COTS
DACS
DND
DoD
DSI
EIA
FAA
FIR
FMECA
FRACAS
FTA
GQM
HCI

14

IEC
IEEE
ISO
IVAN

JA
guidelines

KSLOC
MISRA
MOD
NATO
NCSLOC
NDI
NIST
OTS
QA
QFD
R&M
RAC
RMSL
SAE
SEI

American Institute of Aeronautics and Astronautics
Acrospace Information Report

American National Standards Institute

Allied Reliability and Maintainability Publication
Application Specific Integrated Circuit

British Standards Institute

Capability Maturity Model Integrated

Commercial Off-The-Shelf

Data and Analysis Center for Software

Department of National Defence (Canada)
Department of Defense

Delivered Source Instructions

Electronics Industries Alliance

Federal Aviation Administration

Formal In-Process Review

Failure Modes, Effects and Criticality Analysis
Failure Reporting and Corrective Action System
Fault Tree Analysis

Goal, Question, Metric

Human Computer Interface

Independence, Isolation, Interoperability, Inoperability
International Electrotechnical Commission
Institute of Electrical and Electronic Engineers
International Organization for Standardization
Independent Vulnerability ANalysis

Two character code for SAE ground vehicle (J) and aerospace (A) standards and

Thousands (K) of Source Lines of Code

Motor Industry Software Reliability Association
Ministry Of Defence (United Kingdom)

North Atlantic Treaty Organization
Non-Commented Source Lines of Code
Non-Developmental Item

National Institute of Standards and Technology
Off-The-Shelf

Quality Assurance

Quality Function Deployment

Reliability and Maintainability

Reliability Analysis Center

Reliability, Maintainability, Supportability, Logistics
Society of Automotive Engineers

Software Engineering Institute

Page 3 of 9

Appendix A: Glossary of Terms 2/21/2003 3:53 PM

SFMECA Software FMECA

SFTA Software FTA

SLOC Source Lines of Code

SRE Software Reliability Engineering
UK United Kingdom

V&V Verification and Validation

Page 4 of 9

Appendix A: Glossary of Terms 2/21/2003 3:53 PM

A.2 Primary Definitions

The following key terms are defined. Reference [[EEE610] is a generally applicable reference for software
terms not defined in this section. Some terms apply only to software, but many terms apply more generally
to a system of which software is a component. The specific source of the definitions in this section is
referenced as follows:

[0] term defined by its use in the guide [JA1003]

[1] reference [AIAARO13]

[2] reference [JA1002]

[3] reference [JA1000-1]

[4] reference [[SO12207]

[5] reference [MUSA99]

[6] reference [JA1005]

[7] reference [DO178B]

[8] reference [MILSTD882D]

Acquirer[4]: An organization that procures a system, software product or software service from a supplier.
NOTE-The acquirer could be one of the following: buyer, owner, user, purchaser.

Certification[7]: Legal recognition by the certification authority that a product, service, organization or
person complies with the requirements. Such certification comprises the activity of technically checking
the product, service, organization or person and the formal recognition of compliance with the applicable
requirements by issue of a certificate, license, approval or other documents as required by national laws and
procedures.

Certification Authority/Regulator [7]: The organization or person responsible within the state or country
concerned with the certification of compliance with the requirements.

Contract[4]: A binding agreement between two parties, especially enforceable by law, or a similar internal
agreement wholly within an organization, for the supply of software service or for the supply, development,
production, operation, or maintenance of a software product.

Coverage|[0]: The ratio of actual to possible software features/functions, requirements, statements, and/or
branches/paths that are exercised during one or more test cases. Types of coverage can be categorized by
the unit, e.g., feature coverage, requirements coverage, statement coverage, path coverage.

Customer[0]: see Acquirer.

Defect[0]: Any condition in a software artifact (e.g., specification, code, test) that if left unchanged could
result in a software failure. Defect and fault are sometimes considered to be synonymous although fault is
more strictly considered to be a defect in the code.

Dependability[0]: See Surety.

Design Reliability[0]: (1) The set of activities that focus on the prevention, detection, prediction,
estimation, and/or mitigation of defects in software specifications (e.g., user guide, requirements, design,
code, test plan/cases). (2) A measure of the remaining defects in software specifications at a specific
reference point. (3) A measure of the predicted software reliability at a specific reference point.

Developer[4]: An organization that performs development activities (including requirements analysis,
design, testing through acceptance) during the software life cycle process.

Error[1]: (1) A discrepancy between a computed, observed or measured value or condition and the true,
specified or theoretically correct value or condition. (2) Human action that results in software containing a
fault.

Failure[1]: (1) The inability of a system or system component to perform a required function within
specified limits. A failure may be produced when a fault is encountered and a loss of the expected service
to the user results. (2) The termination of the ability of a functional unit to perform its required function. (3)
A departure of program operation from program requirements.

Page 5 of 9

Appendix A: Glossary of Terms 2/21/2003 3:53 PM

Failure Intensity[5]: see Failure Rate.

Failure Modes, Effects and Criticality Analysis [3]: A proactive approach used for determining the
potential failure modes of a system/equipment (including software), all likely ways in which a component
or equipment can fail, causes for each failure mode, and effects/criticality of each failure mode.

Failure Rate[1]: (1) The ratio of the number of failures of a given category or severity to a given period of
time; for example failures per second of execution time, failures per month. Synonymous with failure
intensity. (2) The ratio of the number of failures to a per unit of time, failures per number of transactions,
failures per number of computer runs.

Failure Reporting and Corrective Action System [3]: A set of processes, procedures, and tools for
reporting, reviewing, analyzing, correcting, and storing information about system/software failures.

Failure Severity[adapted from 1]: A rating system for the impact of every recognized credible failure
mode.

Fault Tolerance[1]: The survival attribute of a system that allows it to deliver the required service after
faults have manifested themselves within the system.

Fault Tree Analysis [3]: An analysis technique where identified potential system failure modes are
analyzed in terms of what potential software faults (single point of failure) or multiple faults (multiple
points of failure) might result in the potential failure mode.

I4- Independence, Isolation, Interoperability, Inoperability[0]:

Independence - multiple, independent subsystems and completely different sources of
enabling stimuli for critical functions are incorporated within the system

Isolation - critical functions are encapsulated separate from any other functions that might
cause undefined interactions with the critical functions

Interoperability - critical functions become predictably and irreversibly inoperable in
credible abnormal operating environments before the isolation features are
compromised

Inoperability - functional interfaces are constructed so that they are incompatible with
functions (in particular safety critical functions) with which they are not
intended to interface

Life Cycle Model[4]: A framework containing the processes, activities, and tasks involved in the
development, operation, and maintenance of a software product, spanning the life of the system from the
definition of its requirements to the termination of its use.

Non-Deliverable Item[4]: Hardware or software product that is not required to be delivered under the
contract but may be employed in the development of a software product.

Off-The-Shelf Product[4]: Product that is already developed and available, usable either "as is" or with
modification.

Operational Profile[5]: The complete set of operations (major system logical tasks) with their
probabilities of occurrence.

Operational Reliability[0]: (1) The set of dynamic test activities that focus on the prevention, detection,
prediction, estimation, and/or mitigation of defects in the operational software code through dynamic unit,
integration, acceptance, certification testing). (2) A measure of the remaining faults in software code at a
specific reference point. (3) A measure of the estimated software reliability at a specific reference point.

Process[4]: A set of interrelated activities, which transform inputs into outputs. NOTE-The term
"activities" covers use of resources.

Qualification[4]: The process of demonstrating whether an entity is capable of fulfilling specified
requirements.

Page 6 of 9

Appendix A: Glossary of Terms 2/21/2003 3:53 PM

Quality Assurance[4]: All the planned and systematic activities implemented within the quality system,
and demonstrated as needed, to provide adequate confidence that an entity will fulfill requirements for
quality. NOTES — 1) There are both internal and external purposes for quality assurance: a) Internal
quality assurance: within an organization, quality assurance provides confidence to management; b)
External quality assurance: in contractual situations, quality assurance provides confidence to the customer
or others. 2) Some quality control and quality assurance actions are interrelated. 3) Unless requirements for
quality fully reflect the needs of the user, quality assurance may not provide adequate confidence.

Safety[8]: Freedom from those conditions that can cause death, injury, occupational illness, damage to or
loss of equipment or property, or damage to the environment.

Security[0]: Features and procedures of a system that ensure its requirements are met for timely access to
authenticated services and for protection from denial of authenticated services.

Software Failure[2]: The inability of a software component to perform its required functions within
specified performance requirements.

Software Fault[1]: (1) A defect in the code that can be the cause of one or more failures. (2) An accidental
condition that causes a functional unit to fail to perform its required function. Synonymous with bug.

Software Fault[2]: An accidental condition that causes a software functional unit to fail to perform its
required function.

Software Fault Density[0]: The ratio of code faults to a unit of size, such as function points, modules,
source lines of code at a specific reference point of time, such as at the start of system test or operational
use.

Software Maintainability[6]: The ease with which a software system or component can be modified to
correct faults, improve performance or other attributes, or adapt to a changed environment. Also, a set of
attributes that bear on the effort needed to make specified modifications.

Software Maintenance[6]: The process of modifying a software system or component after delivery to
correct faults, improve performance or other attributes, or adapt to a changed environment.'

Software Modification Support[6]: The software support activities of change analysis, implementation,
test and release of software products. Changes may be termed corrective, perfective and adaptive, and may
also embrace modifications that are designed to prevent foreseeable future software operating problems.

Software Product[1]: The set of computer programs, procedures, and possibly associated documentation
and data.

Software Reliability[1]: (1) The probability that software will not cause the failure of a system for a
specified time under specified conditions. The probability is a function of the inputs to and use of the
system, as well as a function of the existence of faults in the software. The inputs to the system determine
whether existing faults, if any, are encountered. (2) The ability of a program to perform a required function
under stated conditions for a stated period of time.

Software Reliability[2]: (1) The probability of failure-free operation of a software program for a specified
time under specified conditions. (2) A set of attributes that bear on the capability of software to maintain its
level of performance under stated conditions for a stated period of time.

Software Reliability Case[0]: The evidence presented throughout the project that software reliability
requirements are consistent with system level requirements, are achievable, are understood by the
development organization, and that ambiguities have been resolved.

Software Reliability Engineering[1]: The application of statistical techniques to data collected during
system development and operation to specify, predict, estimate, and assess the reliability of software-based
systems.

! Software maintenance as defined above is essentially the same as software modification support, but is
only part of the software support activities.

Page 7 of 9

Appendix A: Glossary of Terms 2/21/2003 3:53 PM

Software Reliability Estimation[1]: The application of statistical techniques to observed failure data
collected during system testing and operation to assess the reliability of the software.

Software Reliability Management[0]: The process of optimizing the reliability of software across the
complete software life cycle by emphasizing human error prevention, fault detection and removal, use of
measurements to improve reliability, and balancing the level of reliability consistent with project
constraints such as resources, schedule, and performance.

Software Reliability Model[1]: A mathematical expression that specifies the general form of the software
failure process as a function of factors such as fault introduction, fault removal and the operational
environment.

Software Reliability Plan[0]: A description of the set of activities that will be performed throughout a
project to ensure that requirements for software reliability have been defined through negotiations with the
customer, analyses have been identified and conducted that ensure customer reliability requirements are
met, and demonstrated evidence is provided that the customer reliability requirements have been achieved.

Software Reliability Prediction[1]: A forecast of the reliability of the software based on parameters
associated with the software product and its development environment.

Software Reliability Program[0]: The management infrastructure and activities necessary to adequately
integrate software reliability within a system reliability program and provide adequate evidence that the
software reliability requirements have been determined, met, and demonstrated. The two key components
of the management infrastructure are the Software Reliability Plan and Software Reliability Case.

Software Reliability Program [adapted from 3]: The organizational processes and practices that are
intended to: (1) Ensure the delivery of a software product that has been adequately designed to achieve its
performance specifications within its system application context; and (2) Ensure there is adequate evidence
that the performance specification for the delivered software product has been achieved and continues to be
met during operational use.

Software Safety[0]: Features and procedures which ensure that a software product performs predictably
under normal and abnormal conditions, thereby minimizing the likelihood of an unplanned event occurring,
controlling and containing its consequences, and preventing accidental injury, death, destruction of
property and/or damage to the environment, whether intentional or unintentional.

Security[0]: Features and procedures of a system that ensure that its requirements for timely access to
authenticated services and for protection from denial of authenticated services.

Supplier[4]: An organization that enters into a contract with the customer for the supply of a system,
software product or software service under the terms of the contract. NOTES- 1) The term "supplier" is
synonymous with contractor, producer, seller, or vendor. 2) The customer may designate a part of its
organization as supplier.

Surety[0]: Attributes of and activities associated with achieving and assessing system safety, security, and
reliability.

System|[1]: (1) A collection of people, machines and methods organized to accomplish a set of specific
functions. (2) An integrated whole that is composed of diverse, interacting, specialized structures and
subfunctions. (3) A group or subsystem united by some interaction or interdependence, performing many
duties but functioning as a single unit.

System Reliability[3]: The ability of a system to perform a stated function under stated conditions, for a
stated period of time.

System Safety[8]: The application of engineering and management principles, criteria, and techniques to
achieve acceptable mishap risk, within the constraints of operational effectiveness and suitability, time, and
cost, throughout all phases of the system life cycle.

Time[1]: There are several categories of time that may be of interest for determining when failures occur
and the impact of the frequency of the failures. These categories include: (1) Calendar Time: chronological
time, including time during which a computer may not be running. (2) Clock Time: elapsed wall clock time

Page 8 of 9

Appendix A: Glossary of Terms 2/21/2003 3:53 PM

from the start of program execution to the end of program execution. (3) Execution Time: the amount of
actual processor time used in executing a program.

Validation[4]: Confirmation by examination and provision of objective evidence that the particular
requirements for a specific intended use are fulfilled. NOTES — 1) In design and development, validation
concerns the process of examining a product to determine conformity with user needs. 2) Validation is
normally performed on the final product under defined operating conditions. It may be necessary in earlier
stages. 3) "Validated" is used to designate the corresponding status. 4) Multiple validations may be carried
out if there are different intended uses.

Verification[4]: Confirmation by examination and provision of objective evidence that specified
requirements have been fulfilled. NOTES — 1) In design and development, verification concerns the
process of examining the result of a given activity to determine conformity with the stated requirement for
that activity. 2) "Verified" is used to designate the corresponding status.

Page 9 of 9

Appendix B

References

April 3-4, 2003 Procurement of Software Dependant Systems

Appendix B: References 3/18/2003 10:38 AM

Page 2 of 12

Appendix B: References 3/18/2003 10:38 AM

B. References

The indicated references and web links were the current known version as of the publication of this guide. There are
numerous other publications relevant to software reliability.

B.1 SAE PUBLICATIONS

SAE publications can be obtained from:
http://www.sae.org/
SAE World Headquarters
400 Commonwealth Drive
Warrendale, PA 15096-0001 USA

[AIR5022] SAE Aerospace Information Report AIR5022, "Reliability and Safety Process Integration,"
Society of Automotive Engineers, July 1996.
[ARP5580] SAE Aecrospace Recommended Practice ARP 5580, "Recommended Failure Modes and Effects

Analysis (Fmea) Practices for Non-Automobile Applications," Society of Automotive
Engineers, July 2001.

[J1739] SAE J Standard 1739, " Potential Failure Mode and Effects Analysis in Design (Design FMEA)
and Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes
(Process FMEA) and Effects Analysis for Machinery (Machinery FMEA)," Society of
Automotive Engineers, August 2002.

[JA1000] SAE JA Standard 1000, “Reliability Program Standard,” Society of Automotive Engineers,
1998.

[JA1000-1] SAE JA Guideline1000-1, “Reliability Program Implementation Guide,” Society of Automotive
Engineers, 2000.

[JA1002] SAE Surface Vehicle/Aerospace (JA) Standard 1002, “Software Reliability Program Standard,”
Society of Automotive Engineers, 1998.

[JA1003] SAE Surface Vehicle/Aerospace (JA) Guideline 1003 (Draft v0.93), “Software Reliability

Program Standard Implementation Guide,” Society of Automotive Engineers, Draft, Publication
Scheduled for November 2003.

[JA1004] SAE Surface Vehicle/Aerospace (JA) Standard 1004, “Software Supportability Program
Standard,” Society of Automotive Engineers, 1998.

[JA1005] SAE Surface Vehicle/Aerospace (JA) Standard 1004, “Software Supportability Program
Implementation Guidelines,” Society of Automotive Engineers, 2001.

[JA1006] SAE Surface Vehicle/Aerospace (JA) Standard 1004, “Software Support Concept,” Society of

Automotive Engineers, 1999.

B.2 RELATED STANDARDS

A world-wide search capability for reliability standards and standards developing organizations is available from:
http://rac.iitri.org/rac/jsp/standards/standard.jsp
IIT Research Institute / Reliability Analysis Center
201 Mill Street, Rome, NY 13440-6916

AIAA documents can be obtained from:
http://www.aiaa.org/
American Institute of Aeronautics and Astronautics (AIAA)
1801 Alexander Bell Drive, Suite 500
Reston, VA 20191-4344

British Standards Institute documents can be obtained from:
http://www.bsi-global.com/index.xalter
British Standards Institute (BSI)
Linford Wood Milton Keyes
MK14 6LE UK

DoD documents can be obtained from:
http://dodssp.daps.mil/

Page 3 of 12

Appendix B: References 3/18/2003 10:38 AM

Chief, Bibliographic Systems

U.S. Government Printing Office
Sales Management Division (SSMB)
Washington, DC 20402

IEC documents can be obtained from:
http://www.techstreet.com/info/iec.html
International Electrotechnical Commission
1327 Jones Dr.
Ann Arbor, MI, 48105 USA

IEEE documents can be obtained from:
http://www.computer.org/
IEEE Computer Society
Publications Office
10662 Los Vaqueros Circle
P. O. Box 3014
Los Alamitos, CA 90720-1264 USA

ISO documents can be obtained from:
http://www.ili-info.com/us/
Europe: ILI, Index House, Ascot, Berkshire, SLS 7EU, UK
USA: ILI, 610 Winters Avenue, Paramus, NJ 07652, USA
Germany: ILI, Dietlindenstrae 15, D-80802, Munich, Deutschland
Italy: ILI, Via Guido D'Arezzo, 4 - 20145 Milano
France: ILI, 25 rue de Ponthieu, 75008 Paris, France

MISRA documents can be obtained from:

http://www.misra.org.uk/index.htm
Motor Industry Software Reliability Association (MISRA)

Electrical Group, MIRA Ltd
Watling Street
Nuneaton, Warwickshire CV10 0TU UK

NATO documents can be obtained from:
http://www.nato.int/docu/standard.htm
Directorate of Standardization
Stan 2
Kentigern House
65 Brown Street
GLASGOW G2 8EX

NIST documents can be obtained from:
http://csrc.nist.gov/publications/nistpubs/index.html
National Institute of Standards and Technology
100 Bureau Drive, Stop 3460
Gaithersburg, MD 20899-3460 USA

RTCA documents can be obtained from:
http://www.rtca.org/
RTCA, Inc.
1828 L Street, NW
Suite 805
Washington, DC 20036 USA

Software Engineering Institute documents can be obtained from:
http://www.sei.cmu.edu/
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890 USA

UK Ministry of Defence documents can be obtained from:
http://www.dstan.mod.uk/home.htm

Page 4 of 12

Appendix B: References 3/18/2003 10:38 AM

[AIAARO13]

[ARMP1]
[ARMP4]

[ARMP6]
[ARMP7]
[BS5760-P8]

[CMMI2000]

[DEFSTANO0042]

[DEFSTANO0055]

[DEFSTANO0060]

[DO178B]
[DO248B]
[TEC61508]
[IEC61713]
[IEC61719]
[IEEE12207-0]
[IEEE12207-1]
[IEEE12207-2]
[IEEE610]

[IEEE982-1]

UK Defence Standardization
Room 1138

Kentigern House

65 Brown Street
GLASGOW G2 8EX

ANSI/ATAA R-013-1992, “AIAA Recommended Practice for Software Reliability,” February
1993.

ARMP-1, Edition 3, "NATO Requirements for Reliability and Maintainability," June 2002.
ARMP-4, Edition 2, "Guidance on Writing NATO R&M Requirements Documents," October
2001.

ARMP-6, Edition ?, "Monitoring and Managing In-Service R&M,"

NATO R&M Terminology in ARMPs

BS 5760, “Reliability of Systems, Equipment and Components,” Part 8: “Guide to Assessment

of Reliability of Systems Containing Software,” British Standards Institute, Draft for Approval
for Publication, July 7, 1997.

CMMI-SE/SW-Continuous, V1.02, CMMI for Systems Engineering/Software Engineering,
Version 1.02, Continuous Representation, CMU/SEI-2000-TR-019, November 2000.

CMMI-SE/SW-Staged, V1.02, CMMI for Systems Engineering/Software Engineering, Version
1.02, Staged Representation, CMU/SEI-2000-TR-018, November 2000.

Defence Standard 00-42 (PART 2)/Issue 1, “Reliability And Maintainability Assurance Guides,
Part 2: Software,” United Kingdom Ministry of Defence, September 1997.

Defence Standard 00-55 Issue 2, “Requirements for Safety Related Software in Defence
Equipment,” Part 1: Requirements, Part 2: Guidance," United Kingdom Ministry of Defence,
August 1997.

Defence Standard 00-60, “Integrated Logistic Support”, Issue 2, “Logistic Support Analysis
Application to Software Aspects of Systems”, Part 3, United Kingdom Ministry of Defence,
March 1998.

RCTA/DO-178B/ED-12B, “Software Considerations in Airborne Systems and Equipment,”
Federal Aviation Administration software standard, RTCA Inc., December 1992.

RCTA/DO-128, Final Report for Clarification of DO-178B, " Software Considerations in
Airborne Systems and Equipment,” Prepared by SC-190, October 12, 2001.

ISO/IEC 61508, Edition 1.0: "Functional safety of electrical/electronic/programmable electronic
safety-related systems," Multi-part standard, International Electrotechnical Commission, 1998.

ISO/IEC 61713, Edition 1.0: "Software dependability through the software life-cycle processes -
Application guide," International Electrotechnical Commission, June 30, 2000.

ISO/IEC 61719 (Draft): "Guide to measures to be used for the quantitative dependability
assessment of software," ISO/IEC/TC56/SC7/WG10/N111, Draft February 11, 2000.

IEEE/EIA Std 12207.0-1996, “Software life cycle processes,” IEEE Computer Society, March
1998.

IEEE/EIA Std 12207.1-1997, “Software life cycle processes - Life cycle data,” IEEE Computer
Society, April 1998.

IEEE/EIA Std 12207.2-1997, “Software life cycle processes — Implementation considerations,”
IEEE Computer Society, April 1998.

IEEE Std-610.12-1990, “IEEE Standard Glossary of Software Engineering Terminology,” IEEE
Computer Society, September 1990.

IEEE Std-982.1-1988, "IEEE Standard Dictionary of Measures to Produce Reliable Software,"
IEEE Computer Society, June 1988.

Page 5 of 12

Appendix B: References 3/18/2003 10:38 AM

[IEEE982-2]

[IEEE1228]

[1SO12207]
[MILSTDS882D]

[MISRA-VBS]

[NATO96]

[NATO97]

[NIST800-14]
[NIST800-26]
[NIST800-27]

[NUREG6421]

[SPICE98]

IEEE Std-982.2-1988, "IEEE Guide for the use of Standard Dictionary of Measures to Produce
Reliable Software,” IEEE Computer Society, September 1988.

IEEE Std-1228-1994,"IEEE Standard for Software Safety Plans," ,” IEEE Computer Society,
March 1994.

ISO/IEC 12207, “Software Life Cycle Processes,” August 1, 1995.

MIL-STD-882D, " Department of Defense Standard Practice for System Safety," Department of
Defense, February 10, 2000.

ISO/TR 15497, "Development Guidelines for Vehicle Based Software, the Motor Industry,"
Motor Industry Software Reliability Association, ISBN 0 9524156 0 7, November 1994.
NATO (Draft), “COTS Software Acquisition Guidelines and COTS Policy Issues — 1st
Revision,” NATO Communications and Information Systems Agency, January 12, 1996.

NATO (Draft), “NATO Guidelines for the Integration of Off-The-Shelf Software,” Working
Paper AC/322(SC/5)WP/4, NATO C3 Board Information Systems Sub-Committee, June 30,
1997.

NIST 800-14, "Generally Accepted Principles and Practices for Securing Information
Technology Systems," National Institute for Standards and Technology, 1996.

NIST 800-26, "Security Self-Assessment Guide for Information Technology Systems," National
Institute for Standards and Technology, 2001.

NIST 800-27, "Engineering Principles for Information Technology Security (A Baseline for
Achieving Security)," National Institute for Standards and Technology, 2001.

NUREG/CR-6421, "A Proposed Acceptance Process for Commercial Off-the-Shelf (COTS)
Software in Reactor Applications," Office of Nuclear Reactor Regulation, US Regulatory
Commission, March 1996.

ISO/IEC TR 15504:1998: “Software Process Improvement Capability Determination (SPICE) -
Software Process Assessment,” ISO/IEC/JTC1/SC7/WG10/N111, ISO 1998.

B.3 PUBLICATIONS

[BASILI02]

[DACS02]

[FALLA96]

[HELANOS]

[HERRM99]

[LEVESOND95]

[LITTLEWDO!]

[LYU96]

[MUSA92]

[MUSA99]

Basili, Vic, Boehm, Barry, and others, "What We Have Learned About Fighting Defects,"
Proceedings of the Eighth IEEE Symposium on Software Metrics (METRICS™O(2), IEEE
Computer Society, 2002. http://www.CeBASE.org

DACS CD, "Software Reliability Source Book," Data and Analysis Center for Software, Rome,
NY, 2002. http://iac.dtic.mil/dacs/

Falla, Mike, "Results and Achievements from the DTI/EPSRC R&D Programme in Safety
Critical Systems," Compiled and Edited by Mike Falla, Motor Industry Software Reliability
Association, November 1996. http://www.comp.lancs.ac.uk/computing/resources/scs/

Helander, M., Shao, M., and Ohlsson, N. “Planning Models for Software Reliability and Cost,”
IEEE Transactions on Software Engineering, Vol 24, Number 6, June 1998, pp 420-434.

Herrmann, D., Software Safety and Reliability: Techniques, Approaches, and Standards of Key
Industrial Sectors, IEEE Computer Society, Los Alamitos, CA, 1999.

Leveson, Nancy G., Safeware: System Safety and Computers, Addison Wesley Publishing
Company, 1995.

Littlewood, Bev, "Software Reliability and Dependability: A Roadmap," Centre for Software
Reliability, City University, Northampton Square, London, UK, 2001.

Lyu, Michael, Handbook of Software Reliability Engineering, McGraw Hill / IEEE CS Press,
1996.

Musa, John D. “Operational Profiles in Software Reliability Engineering,” IEEE Software,
March 1993, pages 14-32.

Musa, John D., Software Reliability Engineering, McGraw-Hill Book Company, NY, 1999

Page 6 of 12

Appendix B: References 3/18/2003 10:38 AM

[NEUF02]

[PRIM97]

[ROME97]

[SCHN97]

[SSSHDBK99]

[XTALKO3]

Neufelder-Owner, A., N., “The Facts About Predicting Software Defects and Reliability,”
Journal of the RAC, 2ndQ, 2002, pp 1-4.

PRIM-97, "Worldwide Reliability & Maintainability Standards," Reliability Analysis Center,
IIT Research Institute / Reliability Analysis Center, Rome, NY, 1997.

Lakey, Peter and Neufelder, Ann Marie, “System and Software Reliability Assurance
Notebook,” Rome Laboratory Report, Griffiss Air Force Base, Rome NY, 1997.
http://www.cs.colostate.edu/~cs530/rh/masterQ1.pdf

Schneidewind, N., “Reliability Modeling for Safety-Critical Software,” IEEE Transactions on
Reliability, Vol 46, Number 1, March 1997, pp 88-98.

Joint Software System Safety Committee and EIA G-46 Committee, Software System Safety Handbook, Joint Services
Computer Resources Management Group, U.S. Navy, U.S. Army, U.S. Air Force, December 1999.

CrossTalk, "Programming Languages," Journal of Defense Software Engineering, Vol. 16 No.
2, February 2003.

B.4 Interesting Web Sites

[G11SW]
[IEEECS]
[ILS0060]
[1SO]

[LOGSA]

[RAC]
[SEI]
[SOLE]
[SPMN]
[STSC]
[Usc]
[MUSA]
[CSR]
[TRIVEDI]
[FAA-ACS]

http://www.sae.org/TECHCMTE/gl 1soft.htm , G-11SW Committee
http://www.ieee.computer.org/ , IEEE Computer Society

http://www.dstan.mod.uk/dsmain.htm , UK MOD ILS
http://www.iso.ch/ , International Standards Organization (ISO)

http://www.logpars.army.mil/alc/logEngr.htm , Acquisition Logistics Center part of the US
Army Materiel Command Logistic Support Activity (LOGSA), Mil-PRF & MIL-HDBK
documents

http://iitri.com/RAC/ , Reliability Analysis Center

http://www.sei.cmu.edw/ , Software Engineering Institute

http://www.sole.org/ , International Society of Logistics (SOLE)

http://www.spmn.com/index.html , Software Program Manager's Network

http://www.stsc.hill.af.mil/ , Software Technology Support Center
http://sunset.usc.edu/COCOMOII/cocomo.html , COCOMO Project
http://members.aol.com/JohnDMusa/ , John Musa

http://www.csr.ncl.ac.uk:80/ , Centre for Software Reliability, Newcastle University, UK
http://www.ee.duke.edu/~kst/ , Dr Kishor Trivedi, Duke University
http://av-info.faa.gov/software/ , FAA Aircraft Certification Service Software

Page 7 of 12

Appendix B: References 3/18/2003 10:38 AM

References to User Experiences with Software Reliability Engineering

This “page” is copyrighted by John D. Musa (2000). However, you are
encouraged to download, forward, copy, print, or distribute the page,
provided you do so in its entirety (including this notice) and do not sell
or otherwise exploit it for commercial purposes.

JOHN D. MUSA
Website http://members.aol.com/JohnDMusa/
Updated August 25, 2000

If you have written or know of a published article not on this list, please
send it to me in the citation format shown. Please send only references to
articles written about the actual use by project personnel of SRE on real
projects (data collection and analysis is not sufficient). To qualify as
SRE, the project must have developed and used operational profiles, set
and applied failure intensity objectives, or measured failure intensity and
used it in managing the project. The reason for imposing these
requirements is to limit the list to articles that new users can learn from
and apply.

Send E-mail to: mailto:j.musa@ieee.org

Alam, M., W. Chen, W. Ehrlich, M. Engel, D. Kropfl, P. Verma. 1997.
Assessing software reliability performance under highly critical but
infrequent event occurrences. Proceedings 8th International Symposium on
Software Reliability Engineering, Albuquerque, NM, November 1997, pp.
294-307.

Beck, A. 1998. "ESSI process improvement experiment 23843 - USST usage
specification and statistical testing." Proceedings 8th International
Symposium on Software Reliability Engineering: Case Studies, Albuquerque,
NM, November 1997, pp. 95-100.

Bennett, J., Denoncourt, M., and Healy, J. D. 1992. "Software Reliability
Prediction for Telecommunication Systems," Proc. 2nd Bellcore/Purdue
Symposium on Issues in Software Reliability Estimation, Oct. 1992, pp.
85-102.

Bentz, R. W. and C. D. Smith. 1996. Experience report for the software
reliability program on a military system acquisition and development.
Proceedings 7th International Symposium on Software Reliability Engineering
- Industrial Track, White Plains NY, October 30-November 2, 1996, pp.
59-65.

Bergen, L. A. 1989. "A Practical Application of Software Reliability to a
Large Scale Switching System," IEEE International Workshop: Measurement of
Quality During the Life Cycle, Val David, Quebec, Canada, April 25-27,
1989.

Carman, D. W., Dolinsky, A. A., Lyu, M. R., and Yu, J. S. 1995. "Software
Reliability Engineering Study of a Large-Scale Telecommunications Software
System," Proc. 1995 International Symposium on Software Reliability
Engineering, Toulouse, France, Oct. 1995, pp. 350-.

Page 8 of 12

Appendix B: References 3/18/2003 10:38 AM

Carnes, P. 1997. "Software reliability in weapon systems." Proceedings
8th International Symposium on Software Reliability Engineering: Case
Studies, Albuquerque, NM, November 1997, pp. 95-100.

Carnes, P. 1998. "Software reliability in weapon systems." Proceedings
9th International Symposium on Software Reliability Engineering:
Industrial Practices, Paderborn, Germany, November 1998, pp.272-279.

Christenson, D. A. 1988. "Using Software Reliability Models to Predict
Field Failure Rates in Electronic Switching Systems," Proc. 4th Annual
National Joint Conference on Software Quality and Productivity, Washington,
DC.

Chruscielski, K. and J. Tian. 1997. An operational profile for the
cartridge support software. Proceedings 8th International Symposium on
Software Reliability Engineering, Albuquerque, NM, November 1997, pp.
203-212.

Cramp, R., Vouk, M. A., and Jones, W. 1992. "On Operational Availability
of a Large Software-Based Telecommunications System," Proc. 3rd
International Symposium on Software Reliability Engineering, Research
Triangle Park, NC, Oct. 7-10, 1992, pp. 358-366.

Cusick, J. and M. Fine. 1997. Guiding reengineering with the operational
profile. Proceedings 8th International Symposium on Software Reliability
Engineering: Case Studies, Albugquerque, NM, November 1997, pp. 15-25.

Derriennic, H. and G. Le Gall. 1995. Use of failure-intensity models in
the software-validation phase for telecommunications. IEEE Transactions on
Reliability 44 (4) :658-665.

Dixit, P., M. A. Vouk, D. L. Bitzer, and C. Alix. 1996. Reliability and
availability of a wide area network-based education system. Proceedings 7th
International Symposium on Software Reliability Engineering, White Plains
NY, October 30-November 2, 1996, pp. 213-218.

Dixit, P., M. A. Vouk, and D. L. Bitzer. 1997. Reliability behavior of a
large network based education system. Proceedings 8th International
Symposium on Software Reliability Engineering: Case Studies, Albuquerque,
NM, November 1997, pp. 43-56.

Donnelly, M., Everett, B., Musa, J., and Wilson, G. 1996. "Best Current
Practice of SRE," Lyu, M. R. (ed.), Handbook of Software Reliability
Engineering, McGraw-Hill, 1996, pp. 219-254.

Drake, H. D. and D. E. Wolting. 1987. Reliability theory applied to
software testing. Hewlett-Packard Journal 38 (4) :35-39.

Ehrlich, W. K., R. Chan, W. J. Donnelly, H. H. Park, M. B. Saltzman, and P
Verma. 1996. Validating software architectures for high reliability.
Proceedings 7th International Symposium on Software Reliability
Engineering, White Plains NY, October 30-November 2, 1996, pp. 196-206.

Ehrlich, W. K., Lee, K., and Molisani, R. H. 1990. "Applying Reliability
Measurements: A Case Study," IEEE Software, March 1990.

Ehrlich, W. K., Prasanna, B., Stampfel, J. P., and Wu, J. R. 1993.

Page 9 of 12

Appendix B: References 3/18/2003 10:38 AM

"Determining the Cost of a Stop-Test Decision," IEEE Software, March 1993,
pp. 33-42.

Ehrlich, W. K., Stampfel, J. P., and Wu, J. R. 1990. "Application of
Software Reliability Modeling to Product Quality and Test Process," Proc.
12th International Conference on Software Engineering, Nice, France, March
1990.

Elentukh, A. 1994. "System Reliability Policy at Motorola Codex," Proc.
5th International Symposium on Software Reliability Engineering, Monterey,
CA, Nov. 6-9, 1994, pp. 289-293.

Everett, W. W. and J. M. Gobat. 1996. DQS's experience with SRE.
Proceedings 7th International Symposium on Software Reliability
Engineering, White Plains NY, October 30-November 2, 1996, pp. 219-224.

Fuoco, G., Irving, N., Juhlin B., Kropfl, D., and Musa, J. 1996. "The
Operational Profile," Lyu, M. R. (ed.), Handbook of Software Reliability
Engineering, McGraw-Hill, 1996, pp. 167-216 (includes three project
applications) .

Hamilton, P. A. and Musa, J. D. 1978. I'"Measuring Reliability of
Computation Center Software," Proc. 3rd International Conference on
Software Engineering, pp. 29-36.

Hill, S. W. and F. S. Kmetz. 1997. Application of software reliability
engineered testing (SRET) to project accounting application (PAA).
Proceedings 8th International Symposium on Software Reliability
Engineering: Case Studies, Albugquerque, NM, November 1997, pp. 59-68.

Hudepohl, J. P. Measurement of software service quality for large
telecommunications systems. IEEE Journal on Selected Areas in
Communications 8(2) :210-218.

Hudepohl, J. P., W. Snipes, T. Hollack, and W. Jones. A methodology to
improve switching system software service quality and reliability.
Proceedings IEEE Global Communications Conference, pp. 1671-1678.

Iannino, A and Musa, J. D. 1991. "Software Reliability Engineering at
AT&T," Apostolakis, G. (ed.) Probability Safety Assessment and Management -
Vol. 1, Elsevier, New York.

Jenson, B. D. 1995. "A Software Reliability Engineering Success Story:
AT&T's Definity(PBX," Proc. 1995 International Symposium on Software
Reliability Engineering, Toulouse, France, Oct. 1995, pp. 338-343.

Jones, W. D. 1991. "Reliability Models for Very Large Software Systems in
Industry," Proc. 1991 International Symposium on Software Reliability
Engineering, Austin, TX, May 17-18, 1991, pp. 35-42.

Jones,W.D. 1998. "A Brief History of SRE in PCN," Proc. 9th Annual SRE
Workshop 7/14-15/98, Ottawa, Ontario, Canada.

Juhlin, B. D. 1992. '"Implementing Operational Profiles to Measure System

Reliability," Proc. 3rd International Symposium on Software Reliability
Engineering, Research Triangle Park, NC, Oct. 7-10, 1992, pp. 286-295.

Page 10 of 12

Appendix B: References 3/18/2003 10:38 AM

Juhlin, B. D. 1992. "Applying Software Reliability Engineering to
International PBX Testing," Proc. 9th International Conference on Testing
Computer Software, Washington, DC, June 16-18, 1992, pp. 165-176.

Juhlin, B. D. 1993. "Software Reliability Engineering in the System Test
Process," Proc. 10th International Conference on Testing Computer Software,
Washington, DC, June 14-17, 1993, pp. 97-115.

Kadniche, M. and K. Kanoun. 1996. Reliability of a commercial
telecommunications system. Proceedings 7th International Symposium on
Software Reliability Engineering, White Plains NY, October 30-November 2,
1996, pp. 207-212.

Kanoun, K and Sabourin, T. 1987. "Software Dependability of a Telephone
Switching System," Proc. 17th IEEE International Symposium on
Fault-Tolerant Computing, Pittsburgh, June 1987, pp. 236-241.

Kanoun, K., Bastos Martini, M., and Moreira de Souza, J. 1991. "A Method
for Software Reliability Analysis and Prediction-Application to the
TROPICO-R Switching System," IEEE Trans. Software Engineering, April 1991,
pp. 334-344.

Keller, T. and N. Schneidewind. 1997. Successful application of software
reliability engineering for the NASA space shuttle. Proceedings 8th
International Symposium on Software Reliability Engineering: Case Studies,
Albuquerque, NM, November 1997, pp. 71-82.

Kropfl, D. and Ehrlich, W. 1995. "Telecommunications Network Operating
Systems: Experiences in Software Reliability Engineering," Proc. 1995
International Symposium on Software Reliability Engineering, Toulouse,
France, Oct. 1995, pp. 344-349.

Kruger, G. A. 1988. Project management using software reliability growth
models. Hewlett-Packard Journal 39(6) :30-35.

Kruger, G. A. 1989. Validation and further application of software
reliability growth models. Hewlett-Packard Journal 40(4) :75-79.

Lakey, Peter B. 1998. "How does any software organization proceed in
incorporating SRE?" (Crusader self-propelled howitzer project) Proc. 9th
Annual SRE Workshop 7/14-15/98, Ottawa, Ontario, Canada.

Lee, I. and R. K. Iyer. 1995. Software dependability in the Tandem
GUARDIAN system. IEEE Transactions on Software Engineering 21(5) :455-467.

Levendel, Y. 1989. "Defects and Reliability Analysis of Large Software
Systems: Field Experience," Proc. 19th IEEE International Symposium on
Fault-Tolerant Computing, Chicago, June 1989, pp. 238-244.

Levendel, Y. 1990. "Reliability Analysis of Large Software Systems:
Defect Data Modeling," IEEE Trans. Software Engineering, vol. SE-16, no.
2, February 1990, pp. 141-152.

Levendel, Y. 1995. "The Cost Effectiveness of Telecommunication Service

Dependability," Lyu, M. R. (ed.), Software Fault Tolerance, Wiley and Sons,
pp. 279-314.

Page 11 of 12

Appendix B: References 3/18/2003 10:38 AM

Martini, M. R., Kanoun, K. and de Souza, J. M. 1990. "Software
Reliability Evaluation of the TROPICO-R Switching System, IEEE Trans.
Reliability, vol. 33, no. 3, pp. 369-379.

Mendiratta, Veena B. 1998. "Reliability Analysis of Clustered
Architectures," Proc. 9th Annual SRE Workshop 7/14-15/98, Ottawa, Ontario,
Canada.

Musa, J. D., G. Fuoco, N. Irving, B. Juhlin, and D. Kropfl. 1996. The
operational profile. In Handbook of Software Reliability Engineering, ed.
M. R. Lyu, McGraw-Hill, 1996, pp. 167-216 (includes three project
applications) .

Nikora, A. P. and Lyu, M. R. 1996. "Software Reliability Measurement
Experiences," Lyu, M. R. (ed.), Handbook of Software Reliability
Engineering, McGraw-Hill, pp. 255-301.

Oshana, R. and F. P. Coyle. 1997. Improving a system regression test with
usage models developed using field collected data. Proceedings Software
Quality Week 1997.

Pemler, S. and Stahl, N. 1994. "An Automated Environment for Software
Testing and Reliability Estimation," Proc. 5th International Symposium on
Software Reliability Engineering, Monterey, CA, Nov. 6-9, 1994, pp.
312-317.

Rapp, B. 1990. "Application of Software Reliability Models in Medical
Imaging Systems," Proc. 1990 International Symposium on Software
Reliability Engineering, Washington, DC, April 1990.

Sandfoss, R. V. and S. A. Meyer. 1997. Input requirements needed to
produce an operational profile for a new telecommunications system.
Proceedings 8th International Symposium on Software Reliability
Engineering: Case Studies, Albugquerque, NM, November 1997, pp. 29-39.

Schneidewind, N. F. and Keller, T. W. 1992. "Application of Reliability
Models to the Space Shuttle," IEEE Software, July 1992, pp. 28-33.

Teresinski, J. A. 1996. Software reliability: getting started.
Proceedings 7th International Symposium on Software Reliability Engineering
- Industrial Track, White Plains NY, October 30-November 2, 1996, pp.
39-47.

Tian, J. , P. Lu, and J. Palma. 1995. Test-execution based reliability
measurement and modeling for large commercial software. IEEE Transactions
on Software Engineering 21(5) :405-414.

Tierney, J. 1996. Putting aspects of software reliability engineering to
use. Proceedings 7th International Symposium on Software Reliability
Engineering - Industrial Track, White Plains NY, October 30-November 2,
1996, pp. 89-92.

Weinberg, T. 1996. SoothSayer: a tool for measuring the reliability of
Windows NT services. Proceedings 7th International Symposium on Software
Reliability Engineering - Industrial Track, White Plains, NY, October
30-Nivember 2, 1996, pp. 49-56.

Page 12 of 12

Appendix C

Example Software Failures

April 3-4, 2003 Procurement of Software Dependant Systems

1. Therac 25 Accidents (6), June 1985 - January 1987
Leveson, Nancy, "An Investigation of the Therac-25 Accidents," |EEE Computer, July 1993, pp 18-41.

Between June 1985 and January 1987, six known accidents involved massive overdoses by the Therac-25
(radiation treatment equipment), with resultant deaths and seriousinjuries. They have been described as
the worst series of radiation accidentsin the 35-year history of medical accelerators.

The mistakes that were made are not unique to this manufacturer but are, unfortunately, fairly common in
other safety-critical systems.

"A significant amount of software for life-critical systems comes from small firms, especially in the
medical device industry; firmsthat fit the profile of those resistant to or uninformed of the principles of
elther system safety or software engineering.”

Most accidentsare SY STEM accidents; stem from complex interactions between various components and
activities. It would be a serious mistake to attribute a single cause to an accident.

However, the factsin these cases are that software was a major contributor to each of the six accidents.
Major changesin procedures, hardware interlocks, and software code were requested by the FDA and were
made.

1. Airbus A320-211, September 14, 1993
Summary on pg 130 in Herrmann, Debra, Software Reliability and Safety, Computer Society Press, IEEE
Inc, Piscataway, NJ, 1999.

Airbus A320-211 crashed in Warsaw, September 14, 1993 killing two people. A variety of factors
contributed to the hazardous consequences, including a software requirements specification defect.
Weather conditions caused the aircraft to hydroplane which caused a delay in the air-to-ground transition
trigger from the computer because both whees did not reach the "required speed and exhibit the required

landing gear compression” per software specification.

1. Ariane 501 Disaster, June 4, 1996
From the official report as contained at: http://www.esrin.esa.it/htdocs/tidc/ Press/ Press96/arianesrep.htmil

¢

4
4
4

¢

10 years, $7 billion, Ariane giant rocket for launching 3-ton satellites - commercial space business
for Europe

39 seconds after launch, altitude of 2 1/2 miles, self-destruct mechanism destroyed Ariane 5 & its
payload of 4 scientific satellite; aerodynamic forces were ripping the boosters from the rocket.
Spacecraft swerved off course under pressure three powerful nozzlesin its boosters and main engine;
rocket made unneeded abrupt course correction, compensating for a wrong turn not taken.

Steering controlled on-board computer, thought the rocket needed a course change because of
numbers from the inertial guidance system. Numbers were actually diagnostic error message. The
guidance system had shut down (@36.7 sec) when the guidance system's computer tried to convert
one piece of data, the Sdeways velocity of the rocket, from a 64-bit format to a 16-bit format. The
number wastoo big, an overflow error resulted, the guidance system shut down and passed control
to an identical, redundant unit, there to provide backup in case of just such afailure. The second unit
had failed in the identical manner afew milliseconds before. It was running the same software.
Decision was made that this particular velocity figure would never be large enough to cause trouble.
Unluckily, Ariane 5 was a faster rocket than Ariane 4. The calculation containing the bug served no
purpose once the rocket was in the air - only function was to align the system before launch; should
have been turned off but engineers chose long ago, in an earlier version of the Ariane, to leave this
function running for the first 40 secs of flight -- to make it easy to restart the system in the event of a
brief hold in the countdown.

CAUSE OF THE FAILURE

The failure of the Ariane 501 was caused by the complete |oss of guidance and altitude information 37
seconds after start of the main engineignition sequence (30 seconds after lift- off). Thisloss of information
was due to specification and design errorsin the software of theinertial reference system. The extensve
reviews and tests carried out during the Ariane 5 Devel opment Programme did not include adequate
anaysis and testing of the inertia reference system or of the complete flight control system, which could
have detected the potentia failure.

1. Friendly Fire Deaths, March 2002

Jamie McCarthy <jam e@mccarthy.vg>
Tue, 26 Mar 2002 10:47:52 -0500

In one of the more horrifying incidents |'ve read about, U.S. soldiersand allies were killed in December
2001 because of a stunningly poor design of a GPSreceiver, plus "human error.”

http://www.washingtonpost.com/wp-dyn/arti cl es A8853-2002Mar 23.html

A U.S. Special Forces air controller was calling in GPS positioning from some sort of battery-powered
device. He"had used the GPSrecelver to cdculate thelatitude and longitude of the Taliban position in
minutes and seconds for an airstrike by a Navy F/A-18."

According to the * Post* story, the bomber crew "required” a"second calculation in 'degree decimals™ --
why the crew did not have equipment to perform the minutes-seconds conversion themselvesis not
explained.

The air controller had recorded the correct valuein the GPS receiver when the battery died. Upon
replacing the battery, he called in the degree-decimal position the unit was showing -- without realizing that
the unit is set up to reset to its *own* position when the battery is replaced.

The 2,000-pound bomb landed on his position, killing three Special Forces soldiers and injuring 20 others.

If the information in this story is accurate, the RISK S involve replacing memory settings with an
apparently-valid default value instead of blinking O or some other obvioudy-wrong display; not having a
backup battery to hold

valuesin memory during battery replacement; not equipping usersto trandate one coordinate system to
another (reminiscent of the Mars Climate Orbiter damming into the planet when ground crews confused
English with metric); and using a device with such flaws in a combat situation.

1. Air-traffic control software reliability, May 2002

"Peter B. Ladkin" <ladkin@rvs.uni-bielefeld.de>
Wed, 15 May 2002 10:03:39 +0200

An articlein * Aviation Week and Space Technology*, "Why Controllers Are Skeptics Regarding New
Technology", by Bruce Nordwall, 6 May 2002, pp.50-51, tells the following tale recounted recently at an
air-traffic controllers conference by Philippe Domogola, supervisor at the Maastricht Upper Area Control
Center.

"Some years ago," anew European ATC center ingtalled software specified as "99.99% reliable”, which
apparently meant 99.99% availability in each calendar year, or a maximum of roughly 52 minutes down-
time per year. The software "failed" a couple of months after installation, and suffered 20 hours down-
time. "The manufacturer's conclusion was. human error that will not happen again” (come to think of it, any
specific software bug can be put down to "human error that will not happen again™).

Someone had forgotten about leap years. It failed at 23:59 on February 28.

Some controllers suggested that since the software was "99.99% reliable" and it had already been
unavailable for 20 hours, it follows there were going to be no more failures for the next 25 years.

They wereright. It does follow.

Peter B. Ladkin, University of Bidefeld, Germany
http://www.rvs.uni-bielefeld.de

1. Impact of inadequate software testing on US economy, June
2002

Rick Kuhn <kuhn@nist.gov>
Wed, 05 Jun 2002 14:53:35 -0400

http://www.nist.gov/director/prog-ofc/report02-3.pdf

NIST hasreleased a new study conducted by the Research Triangle Ingtitute that should be of interest to
readers: "The Economic Impacts of |nadequate Infrastructure for Software Testing". From the summary:

NIST engaged the Research Triangle Institute (RTI) to assess the cost to the U.S. economy of inadequate
software testing infrastructure. Inadequate testing is defined asfailure to identify and remove software
bugsinred time. Over haf of software bugs are currently not found until downstream in the devel opment
process | eading to significant economic costs. RTI identified a set of quality attributes and used them to
construct metrics for estimating the cost of an inadequate testing infrastructure. Two in depth case studies
were conducted. In the manufacturing sector, transportation equipment industries were analyzed. Datawere
collected from software devel opers (CAD/CAM/CAE and product data management vendors) and from
users (primarily automotive and aerospace companies). In the service sector, financial services were
analyzed with data collected again from

software devel opers (routers and switches, financial electronic datainterchange, and clearinghouse) and
from users (banks and credit unions). ...the annual cost to these two major industry groups from inadequate
software infrastructureis estimated to be $5.85 billion. Similarities across industries with respect to
software development and use and, in particular, software testing labor costs alowed a projection of the
cost to the entire U.S. economy. Using the per-empl oyee impacts for the two case studies, an extrapolation
to other manufacturing and service industries yields an approximate estimate of $59.5 hillion asthe annual
cost to the nation of inadequate software testing infrastructure.

1. Army Training Accident, June 2002

Seve Bellovin <smb@research.att.com>
Thu, 13 Jun 2002 09:38:10 -0400

According to aU.S. Army report, a software problem contributed to the deaths of two soldiersin atraining
accident at Fort Drum. They werefiring artillery shells, and were relying on the output of the Advanced
Field Artillery Tactical Data System. But if you forget to enter thetarget's altitude, the system assumesa
default of 0. (A Web dite | found indicates that (part of) Ft. Drum isat 679 feet above sealevel.) The
report goes on to warn that soldiers should not depend exclusively on this one system, and should use other
computers or manual calculations.

Other factors in the incident include the state of training of some of the personnel doing the firing. [Source:
AP

1. Questions About New Air-Traffic Computer System, June
2002

lan Macky <ian.macky@or acle.com>
Wed, 5 Jun 2002 14:10:15 -0700 (PDT)

There are some highly scary quotesin this article regarding the new STARS (Standard Terminal
Automation Replacement System) which is supposed to replace the hodge-podge of old air-traffic control
systems:

http://www.cnn.com/2002/TRAV EL/NEWS/06/05/faa.airtraffi c.ap/index.html

Players arethe FAA Union (representing the flight controllers), the FAA technicians who are trying to roll
out the new system, the equipment builder, Raytheon Co., and the DOT (Department of Transportation).

[..]

"DOT Inspector General Kenneth Mead ... said there were 71 specific software problems that could prevent
the system from operating as designed, or could threaten safety or security. " "Mead said controllersin El
Paso had to track airplanes manually because the computer system didn't properly display the flights.”

Union vice president Tom Brantley: "They don't believe it's operationally suitable,” Brantley said. "It's
failing. It hasalot of errors. They can't verify that it works because it failsalot of the tests.”

FAA spokesman Scott Brenner said the only problems are the normal bugs (!) that accompany any new
technology. [Shipit!] "When the [FAA] techniciansrefused to certify the system in Syracuse, New Y ork,
the FAA invoked a never-before-used [emergency] clause in its contract with its employees and ordered
them to approve the equi pment.

The Syracuse system was turned on Monday night." Brantley: "The emergency clause was never intended
for something likethis. That wasintended if there were an actual emergency.”

Blanche Necessary (!), a spokeswoman for the equipment builder, Raytheon Co., said the system was
working well in El Paso and Syracuse. etc., etc.

The RISKS are painfully familiar. Fedl safer flying?

1. Software "glitch" Changes the Colour of the Universe, March
2002

Pete Méellor <pm@csr.city.ac.uk>

Wed, 13 Mar 2002 00:35:43 +0000 (GMT)

As reported on the "Broadcasting House" programme on BBC Radio 4, Sunday 10th March:-

Scientigts at John Hopkins University have spent several years cal cul ating the weighted average of the

el ectromagnetic frequency of emissions from all galaxies in the observable universe. They concluded their

research by announcing last month that, on average, the universeis turquoise.

Last week, they announced that, due to a software "glitch", they had miscal culated, and that the universeis,
in fact, beige.

Broadcasting House are threatening lega action, claiming that they have just had their studio painted
turquoise in order to be in harmony with therest of the universe.

Peter Mdlor, Centre for Software Reliability, City University,
Northampton Square, London EC1V OHB UK NEW Tédl.: +44 (0)20 7040 8422

From the IT department at Franciscan
Computer Zen

In Japan, they have replaced theimpersonal and unhdpful Microsoft error messages with Haiku poetry
messages.

Haiku poetry has strict construction rules. Each poem has only three lines, 17 syllables: five syllablesin
thefirg line, seven in the second, five in the third.

Haikus are used to communicate a timel ess message often achieving awistful, yearning and powerful
insight through extreme brevity....the essence of Zen!

Here are some examples:

Your filewas so big.
It might be very useful.
But now it isgone.

The Web site you seek
Cannot be located, but
Countless more exi <.

Chaos reigns within.
Reflect, repent, and reboot.
Order shall return.

Program aborting:

Close all that you have worked on.

Y ou ask far too much.

Windows NT crashed.
| am the Blue Screen of Death.
No one hears your screams.

Y esterday it worked.
Today it isnot working.
Windowsis like that.

Firg show, then silence.
This thousand-dollar screen dies
So beautifully.

With searching comes loss
And the presence of absence:
"My Nove" not found.

Stay the patient course.
Of little worth is your ire,
The network is down.

A crash reduces
Y our expens ve computer
Toadmple stone.

Threethings are certain:
Death, taxes and | ost data.
Guess which has occurred.

You step in the stream,
But the water has moved on.
This pageisnot here.

Having been erased,
The document you're seeking
Must now be retyped.

Serious error.
All shortcuts have disappeared.
Screen. Mind. Both are blank.

Appendix D

Case Study Materials

April 3-4, 2003 Procurement of Software Dependant Systems

Software Reliability Plan Thematic Outline

1. MANAGING THE SOFTWARE RELIABILITY PROGRAM ACTIVITIES
1.1 Define purpose, scope of plan and program, reliability goals and objectives
1.2 Nomenclature and project references
1.3 Program management functions: responsibility, authority, interaction between
system and software reliability programs; customer interaction/involvement; risk
management
1.4 Resources needed, including personnel and equipment
1.5 Schedule
1.6 Training
1.7 Subcontract Management
1.8 Plan approval and maintenance
2. PERFORMING SOFTWARE RELIABILITY PROGRAM ACTIVITIES
2.1 Determine Customer Requirements
2.1.1 Establish supplier-customer dialogue
2.1.2 Identify operational conditions of use
2.1.3 Define in-service conditions of support
2.1.4 Establish metrics: goals, assumptions and claims, and expected evidence
2.1.5 Develop plan
2.1.6 Document pre-development case evidence
2.2 Meet Customer Requirements
2.2.1 Define lifecycle model, methodology, interaction with system engineering
2.2.2 Identify specific static and dynamic analyses to be performed throughout
lifecycle, and associated progress reporting approach
2.2.3 Perform design, implementation, test activities
2.24 Document development case evidence
2.3 Demonstrate Customer Requirements
2.3.1 Qualify the product and process
2.3.2 Establish process controls
2.2.3 Transition to operational environment
2.2.4 Training end-users, operations and support staff
2.3.5 Pursue continuous improvement
2.3.6 Establish data collection and reporting
2.3.7 Document post-development case evidence
3. DOCUMENTING SOFTWARE RELIABILITY PROGRAM ACTIVITIES
3.1 Lifecycle practices
32 Software reliability case file of evidence

Draft from JA1003 as of 3/18/2003 10:45 AM Page 1 of 4

Software Reliability Case Thematic Outline

1. SOFTWARE RELIABILITY GOALS AND OBJECTIVES
1.1 What they are, overall and for partitions
1.2 How were they derived, apportioned to software and partitions
1.3 Relation to system reliability goals
1.4 Regulatory and/or contractual requirements
2. ASSUMPTIONS AND CLAIMS
2.1 Assumptions: agreed upon constraints and basis for claims
2.2 Claims: agreed upon validation and certification criteria
3. EVIDENCE
For each of the phases: Pre-development/Development/Post-development/In-Service
3.1 Process activities that demonstrate achievement of software reliability goals and
objectives
3.2 Product characteristics that demonstrate achievement of software reliability goals
and objectives
33 Qualifications of people and resources that demonstrate achievement of software
reliability goals and objectives
4. CONCLUSION/RECOMMENDATION
4.1 Summary of reliability goals, claims, and actual evidence provided
4.2 Recommendations related to warranty, certification, qualification
5. CERTIFICATION RECORDS
5.1 Record of all acceptance warranty, certification, qualification activities and results

Draft from JA1003 as of 3/18/2003 10:45 AM Page 2 of 4

Software Reliability Case Evidence Guidelines

1. SOFTWARE RELIABILITY GOALS AND OBJECTIVES

The information in the software reliability case file must correlate with the specified
software reliability goals. Hence, the software reliability goals and objectives should be
stated first, for the system and individual partitions, as appropriate. The process by
which the reliability goals were derived and apportioned to software should be described.
The relationship between the system and software reliability goals should be explained.
Any regulatory and/or contractual reliability requirements should be highlighted. In
addition, the agreed upon validation and certification criteria should be noted.

2. ASSUMPTIONS AND CLAIMS

All assumptions, such as citing existing systems or research, and claims made relative to
achievement and assessment of the software reliability goals and objectives should be
clearly stated and justified.

3. EVIDENCE

Three categories of evidence should be supplied in the software reliability case file:
process activities, product characteristics, and qualifications of people and resources that
demonstrate achievement of software reliability goals. As an introduction to the
evidence, this information can be summarized as shown in the Table below.

System:

Intended Use/Environment:

Phase/Date:
Table. Summary of Software Reliability Case Evidence

Reliability Control Product Evidence/ Process Evidence/ Resource Evidence/
Measure Safeguards Safeguards Safeguards

Fault - - -
Elimination - - -

Failure - - -
containment - - R

Failure rate - - -
estimation - - -

Draft from JA1003 as of 3/18/2003 10:45 AM Page 3 of 4

3.1

32

3.3

Process activities that demonstrate achievement of software reliability goals and objectives

A description of the selected lifecycle model and development methodology should be
provided, including an explanation of how this model and methodology contribute(d) to
the attainment and assessment of reliability goals throughout the lifecycle phases.
Specific lifecycle activities that were used to assess software reliability should be called
out, such as performing iterative risk analyses or using of static analysis techniques. An
assessment should be made of the:

e software reliability design analysis,
e software reliability code analysis,
e software reliability change analysis, and

e effectiveness of validation and verification activities.

Suspected or confirmed reliability problems should be documented, along with the
current status of their resolution. Results from analyzing and interpreting process metrics
should also be discussed.

Product characteristics that demonstrate achievement of software reliability goals and
objectives

A description of the design features which contribute to enhanced reliability should be
provided, such as: partitioning, diversity, block recovery, independence, information
hiding, and system/software fault tolerance. This description should explain how the
likelihood of common cause failures has been eliminated or reduced. In addition, a
discussion of whether the product: 1) operates in a demand-mode or continuous-mode
environment; 2) was designed to fail safe or fail operational; and 3) contains any
monitoring and/or error detection and correction features should be included. The results
of static and dynamic analyses should be recorded, along with an analysis of the
effectiveness of the reliability control measures. Results from analyzing and interpreting
product metrics should also be discussed.

Qualifications of people and resources that demonstrate achievement of software reliability
goals and objectives

An explanation of why the education, experience, and certification of the professional
staff is appropriate for a project of this reliability level should be provided. Likewise, a
justification of why the hardware and software platforms, including automated tools, are
appropriate for this project should be provided. Results from analyzing and interpreting
people/resource metrics should also be discussed.

CONCLUSION/RECOMMENDATION

The conclusion should summarize the information presented in sections 4.2.2 and 4.2.3 to
demonstrate whether the software reliability goals and objectives have been met and
make a recommendation regarding certification.

CERTIFICATION RECORDS

An accurate and complete chronological history of all certifications attempted should be
maintained in the software reliability case file.

Draft from JA1003 as of 3/18/2003 10:45 AM Page 4 of 4

Contract for Acquisition
of
Commercial Aircraft Equipment with Software Product

1. INTRODUCTION

1.1. Purpose and Scope

1.2. Roles and Responsibilities

- customer
- supplier
- certification authority

1.3. Expectations

- objectives
- software process
- specialty engineering (reliability/safety)

2. REQUIREMENTS

2.1. Graded Formality
- software product level based on application and supplier survey of capabilities
2.2. Certification Requirements

- per DO178B with caveats per CAST-1 guidance/system safety/reliability level
- appropriate for the graded formality

2.3. Key Performance Parameters

- include software reliability case as part of verification plan/case/results evidence
- include software safety case as part of verification plan/case/results evidence
- appropriate for the graded formality

2.4. Supplier Survey

- include requirement to conduct supplier survey for final product acceptance

3. CONDITIONS AND CONSTRAINTS
3.1. Schedule
3.2. Budget

3.3. Deliverables

Page 1 of 3

A. Appendix A — Supplier Survey
(a) RCTA/DO178B Certification Evidence Review

- minimal: Plan for Software Aspects of Certification
Software Configuration Index
Software Accomplishment Summary
Results of certification authority review of associated equipment

(b) Key Performance Parameters Evidence Review

- additional: verification plan/case/results evidence for software reliability
verification plan/case/results evidence for software safety

(c) Supplier Capabilities Checklist (FAA N 8110.87)

- Top Ten Practices Recommended by Neufelder
- Score: 0 —none; 0.5 — partial; 1.0 — complete

Table 1. Best Practices for Reliability

Practice Supplier | Customer | Observations
Score Score

All requirements are mapped to system tests

Requirements are reviewed before designing or
coding

System test beds are used

Test plan started at least one phase of the life
cycle before testing begins

Testers use a FRACAS (defect tracking system) to
determine what to test/retest

All upgrades after a system test are regression
tested

Correction action releases per year <= 4

All modifications made after a system test are
regression tested

FRACAS used for tracking all corrective actions

Walk-thrus are performed for all phases of life
cycle

Page 2 of 3

TABLE 2. OTHER RELEVANT CRITERIA

| | CRITERIA Seale MIN. MAX. Seore
1. Applicant/Developer Software Certification
Expericnce
1.1 | Experience with civil aircraft and systems certification. | Scale: 0 5 1o
projects: 1-5 4
1.2 | Experience with DO-1T8B. Scale: 0 5 1o
projects: 2 5+
1.3 | Experience with DO-178 or DO-1T8A. Scale: i 3 5
projects: 4-fr 1+
1.4 | Experience with other software standards {other than Scale: 0 z 4
DO-178[1 # projects: 4-fy T+
2, Applicant/Developer Demonstrated Software
Development Capability
21 Ability to consistently produce DO-178B software Scale: 0 5 10
producis. Ability: Low Med High
2.1 | Cooperation, openness and resource conumitmants Scale: 0 5 ¥]
Ability: Low Med High
2.3 | Ability to manage software development and sub- Scale: 0 3 10
Ccontractong Ability: Low Med High
24 | Capability assessments {e.g.. SET CMM, 150 S001-3, Scale: i z 4
IEC) Ability: Low Med High
2.5 | Development team average relevant experience Scale:] 5 10
Ability: =2vrs 2-dwrs >4
3. Applicant/Developer Software Service History
31| Incidents of software-related problems, Scale: 0 5 10
(a5 a percentase of affected products) Incidents: = 25% = 10% None
32 Company managemeant and suppont of designees Scale: 0 5 10
Ouality: Low Med Hizh
13] Company software guality assurance organization and | Scale: 0 5 10
configuration management process Quality: Low Ml High
14 | Company stability and commitment Scale: 0 3]
Stability: Low Med High
35 | Success of past company certification efforts Scale: 0 3 i
Success: MNone =500 All
4. The Current System and Software Application
4.1 | Complexity of the system architecture, functions and Scale: 0 5 10
interfaces Complex: High Med Low
42 | Complexity & size of the software and safety features Scale: 0 5 1
Complex: High Med Low
43 | Movelty of design and use of new technology Scale: 0 5 10
Mewness: Much Some None
44 | Software development and verification environment Scale: 0 3 ¥
Environ: None Older Modern
4.5 | Use ofalternative methods or additional considerations | Scale: 0 3]
Standard: Much Linle MNone
5. Designee Capabilities
5.1 | Experience of designees with DO-178B. Scale: U 5 10
Projects: <5 5-10 =10
5.2 | Designee authority, autononyy and independence. Scale: { 5 10
Autonoimy: MNone Self-starter Outeoing
5.3 | Designes cooperation, openness and i2sue resolution Scale: 0 5 1o
elfectiveness, Effectivensss:
Mon-Responsive Responsive Cooperative
& Qutpoing
5.4 | Relatedness of assigned designee’s experience. Scale: 0 5 1o
Related: Mone Somewhat Exact
5.5 | Designess current workload on project and other Secale: { 5 10
projects. Workload: High Mediuom Low
5.6 | Experience of desipnees with other software standards | Scale: 0 3 5
[ether than DO-178] 11 Projects: =5 5-10 =10

Total Score Result (TSRy

Page 3 of 3

IMA Inc Level of FAA Involvement Assessment

1. IMA Inc COMPANY OVERVIEW

Applicant company IMA, Inc is applying for approval of their Integrated Modular
Avionics (IMA) product that is usually approved for Technical Standard Order (TSO)
projects and then the installation by Supplemental Type Certificate (STC) and installed
on new or in-service aircraft. The equipment provides standard capability required by
airlines, and is regularly upgraded for improved capabilities. IMA Inc has prior TSO
approvals on a number of aircraft and recently upgraded the software aspects of their
Load Control software product to RTCA DO-178B Level A criteria. In past programs,
they have consistently demonstrated their willingness to commit the necessary resources
and change their processes to utilize new technologies while maintaining a quality
product and satisfying certification requirements.

IMA Inc's product service history indicates almost no in-service difficulties with their
products and their technology and system architecture are fairly stable. Replacement of
obsolete parts is being planned and seemingly being well managed. They appear to have a
stable in-house process for managing changes, even though almost every different aircraft
installation requires some changes to the software. The development and verification
environment is state-of-the-practice and new tools are introduced when economically
advantageous. The company contracts through job placement agencies for low-level
software testers.

IMA Inc has 3 company designees on-site, 2 with software authority and 1 with electrical
system authority, and the company occasionally contracts with a consultant Designated
Engineering Representative (DER) for system approvals. One of the software DERSs is
very experienced and the other has been a DER for less than a year. The experienced
software DER also is the manager for the software verification group, part of the
engineering organization, and the less experienced software DER is in the company’s
SQA organization, which is independent of the engineering organization and has highly
qualified and experienced personnel.

2. IMA Inc ASSESSMENT

An experienced software Aviation Safety Engineer (ASE) involved with several previous
projects for the company, and having previously conducted 2 on-site reviews, assesses
IMA Inc on the new project to deliver the IMA units, in particular the Load Control
software. The results of the assessment:

Criteria 1: Application/Developer Software Certification Experience
Score: 20 out of possible 29

Criteria 2: Application/Developer Demonstrated Software Development Capability
Score: 21 out of possible 44

Criteria 3: Application/Developer Software Service History
Score: 36 out of possible 42

Criteria 4: The Current System and Software Application

as of 3/18/2003 10:43 AM Page 1 of 2 Case Study LOFI, Session 03

Score: 26 out of possible 42
Criteria 5: Designee Capabilities
Score: 38 out of possible 55
Total Score Results (TSR): 141 out of possible 212

3. LEVEL OF FAA INVOLVEMENT FOR IMA Inc

Using Table below with a Level A software assessment and TSR of 141 indicates that the
Level of FAA Involvement (LOFI) should be MEDIUM. There would be some need for
National Resource Specialist (NRS) or Technical Standard (TS) support since a new
authentication technology (digital signatures) is being used. For this project, the Aircraft
Certification Office (ACO) may elect to perform one on-site review and some desk
reviews, depending on their workload. Much of the data approval could be delegated.
However, because it is a level A software project in the system, approval of the software
accomplishment summary should be reserved by the ACO.

Total Score Result | SW Level A Software Level B Software Level C Software Level D
TSR <= 80 HIGH HIGH MEDIUM LOW
80 <TSR<=130 | HIGH MEDIUM MEDIUM LOW
130 < TSR MEDIUM MEDIUM LOW LOW

Acronyms:

ACO Aircraft Certification Office

ASE Aviation Safety Engineer

DER Designated Engineering Representative

FAA Federal Aviation Administration

IMA Integrated Modular Avionics

LOFI Level Of FAA Involvement

NRS National Resource Specialist

SQA Software Quality Assurance

STC Supplemental Type Certificates

TS Technical Standard

TSO Technical Standard Order

TSOA Technical Standard Order Authorization
TSR Total Score Result

4. FAA MEDIUM LEVEL INVOLVEMENT FOR IMA Inc
The following activities constitute the agreement between FAA and IMA, Inc for
certification of the new IMA Load Control Software for use with certified IMA Units.

Level of Example of Typical Program Decisions
FAA
Involvement
MEDIUM e DER has approval authority of SCI, SDP, SQAP, SCMP

e FAA/TSO involvement for planning, reliability demonstration, final compliance meetings;
approval authority of PSAC, Verification Plan/Case and SAS

e FAA/TSO conducts on-site review as part of initial PSAC and final compliance meetings

e FAA/TSO conducts desk reviews of PSAC, Verification Plan/Case, SCI, and SAS

e FAA/TSO requires submittal of PSAC, SCI, Verification Plan/Case, SAS

as of 3/18/2003 10:43 AM Page 2 of 2 Case Study LOFI, Session 03

IMA Inc

Plan for Software Aspects of Certification (PSAC)

Life Cycle Activity Matrix

Life Cycle Verification Reliability Activity Claim Evidence Rationale References
Activity Activity
Requirements Formal -DRE -DRE will be at least 70% based on | -#Defects -Formal Inspection is -Formal
Inspection Major-Severity Level 1,2,3,4 | defects found and root cause sources | -Defects Source recognized as a "best Inspection
Minor-Severity Level 5 throughout life cycle -DRE practice" Reports
-Traceability Analysis -Defects/page<= 0.5
Design Formal -DRE -DRE will be at least 70% based on | -#Defects Formal Inspection is -Formal
Inspection Major-Severity Level 1,2,3,4 | defects found and root cause sources | -Defects Source recognized as a "best Inspection
Minor-Severity Level 5 throughout life cycle -DRE practice" Reports
-Traceability Analysis -Defects/page<= 0.5
Design Analysis of -Software FMEA and FTA -State chart design and code analysis | -Failure Modes SW FMEA and SW -Detailed
potential ensures no software defects exist -Fault Trees FTA support System FMEA and
failure modes that could cause Major Failures -Mitigation Approach Analyses FTA analyses
Code Formal -DRE -DRE will be at least 70% based on | -#Defects Formal Inspection is -Formal
Inspection Major-Severity Level 1,2,3,4 | defects found and root cause sources | -Defects Source recognized as a "best Inspection
Minor-Severity Level 5 throughout life cycle -DRE practice" Reports
-Traceability Analysis -Defects/KSLOC<=7
Unit Test Test to low -Requirement Coverage -100% -#Defects -Coverage testing is -Development
level -Feature Coverage -100% -Actual Coverage considered a 'Top Ten Folders
requirements -Path Coverage -100% (logic path) Metrics best practice for
-Statement Coverage -100% -Unit test results software reliability'
System/ Formal -DRE -DRE will be at least 70% based on | -#Defects -Formal Inspection is -Formal
Integration Test | Inspection Major-Severity Level 1,2,3,4 | defects found and root cause sources | -Defects Source recognized as a "Top Inspection
Plan Minor-Severity Level 5 throughout life cycle -DRE Ten best practice for Reports
-Traceability Analysis -Defect density = 0.5 software reliability'
System/ Test to High -Requirement Coverage -100% -Coverage Metrics -System testing and -Formal
Integration Level -Feature Coverage -100% -Defect data regression testing when | product
Testing Requirements | -Operational Profiles -Defect pKSLOC <= 1.0 -Reliability model changes are made is definition -

as of 3/3/2003 3:35 PM

Page 1 of 2

Case Study PSAC Activity Matrix, Session 03

Life Cycle Verification Reliability Activity Claim Evidence Rationale References
Activity Activity
-Reliability Growth -Reliability >= 0.99 ph results considered a "Top Ten Verification
h=ex hour -Test Results best practice for Report
~ 2500 IMU op hrs software reliability'
General Failure -Track defects throughout life -FRACAS system will reduce -Defect identification -System testing and -FRACAS data
FRACAS reporting and cycle; root cause analyses; rework and provide for process and corrective action regression testing when | base
corrective defect density; failure rate improvement documentation changes are made is
action system considered a "Top Ten
best practice for
software reliability'
FAA -FAA Initial -Provide reliability evidence at | -All review actions will be resolved | -Review action items -FAA LOFI determined | -FAA
Certification Review each review, including prior to delivery of Load Control -Final Compliance by applying FAA Certification
-FAA reliability Software to customer Review guidance Data
Verification demonstration/acceptance at -acceptance metrics
Review Final Compliance Review -PSAC
-FAA Final acceptance metrics -Verification Plan/Case
Compliance -SCI
Review -SAS
NSIA Air -FAA -Same as for FAA Certification | -Customer independent reviews and | -Same as for FAA -Independent -FAA
Acquisition Certification -Customer assessment of KPP assessment provides additional | Certification verification is a best Certification
Evidence supplier capabilities/KPP assurance that reliability goals are -KPP values practice and provides Information
Review met. -Supplier checklist customer with specific -IMA project
-Key score capability to ensure configuration
Performance adequate goals are set management
Parameters and met by the supplier | system
Evidence -IMA FRACAS
Review
-Supplier
Capabilities
Checklist
Review

as of 3/3/2003 3:35 PM

Page 2 of 2

Case Study PSAC Activity Matrix, Session 03

Appendix E

Abstract and Biography

April 3-4, 2003 Procurement of Software Dependant Systems

The Procurement of Software Dependent Systems
Making Systems Reliable through Software Reliability Engineering Techniques
Dr David E Peercy, Sandia National Laboratories

This presentation provides an introduction to software reliability with a case study example. The
presentation illustrates how one might establish a software reliability program as part of the procurement
of software dependent systems. Recently developed Society of Automotive Engineers (SAE) standards
are the primary source for the software reliability program concepts. The case study is specific to FAA
Aerospace product certification and illustrates hypothetical interactions of customer, supplier, and
certification authority with a focus on example software reliability requirements and results.

A software reliability program includes activities across the full system/software life cycle that provide a
level of confidence the software will not fail during its operational mission. The goals and objectives of a
software reliability program and the key principles of determining, meeting, and demonstrating customer
requirements will be discussed. The context for software reliability includes integration with system
reliability, design for and operational measurement of reliability, and use of a management planning and
case evidence framework.

Dr David E Peercy
Sandia National Laboratories
Biography

Dr. Peercy is a Distinguished Member of the Technical Staff at Sandia National Laboratories responsible
for quality engineering of critical software systems. He is lead quality engineer for Use Control software
applications, including over 20 Mark Quality software products delivered to DoD customers over the past
four years. He is lead quality engineer for the W80-3 Crypto Coded Switch, principal investigator for the
ASCI V&V program, core Sandia representative to the Nuclear Weapons Complex Software Quality
Assurance Subcommittee, and Chair of the SAE G-11 RMSL Software Committee developing
International software supportability and reliability standards. Dr Peercy has software publications in
reliability, maintenance, supportability, and process improvement. Dr. Peercy received his Ph.D in
Mathematics from New Mexico State University in 1971, is a Certified Software Quality Engineer, and a
member of several professional societies: ASQ, IEEE, ACM, AIAA, and SOLE.

Dr David E Peercy
Office: 505-844-7965
Email: depeerc@sandia.gov
Sandia National Laboratories
P.O. Box 5800, MS-0638
Albuquerque, NM 87185-0638

Biography

Dr. Peercy is a Distinguished Technical Staff Member at Sandia National Laboratories (SNL) responsible
for quality engineering of critical software systems. He has been the lead quality engineer for Use
Control software and Use Control applications that have been developed over the past 10 years. The most
recent effort is called the Code Management System (CMS) project that will produce a common family of
products and applications over the period 1997 through 2005 that will replace all Use Control equipment
in the field. Dr. Peercy is also the lead quality engineer for the Crypto Coded Switch component of the
new W80-3 Stockpile Life Extension program. Dr Peercy also provides V&V program consultation for
the Advanced Simulation and Computing Program (ASCI) and is the core representative for SNL on the
Nuclear Weapons Complex Software Quality Assurance Subcommittee (SQAS).

Dr. Peercy is the chairman of the Society of Automotive Engineers (SAE) G-11SW Software Committee
developing International standards and guidelines for software supportability and software reliability. He
has taught short courses / tutorials on a variety of software subjects and has numerous publications in
software engineering areas such as software reliability, software maintenance, software supportability,
and software process improvement.

Dr. Peercy has been a reviewer for numerous standards including the Pascal and ADA language
standards, the National Computer Security Center Trusted Network Evaluation Criteria and various IEEE
standards. Dr. Peercy received his Ph.D. and Masters in mathematics from New Mexico State University
and his Bachelors in Applied Mathematics from the University of Colorado.

Professional Organization Affiliations

American Society for Quality (ASQ), Certified Software Quality Engineer (CSQE)
IEEE Computer Society

Association for Computing Machinery (ACM)

American Institute of Aeronautics and Astronautics (ATAA)

International Society of Logistics (SOLE)

	Appendix A Glossary of Terms.pdf
	Glossary of Terms
	Primary Acronyms
	Primary Definitions

	Case Study Material.pdf
	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)

	Case Study Material.pdf
	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)

	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)

	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)

	Case Study Material.pdf
	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)

	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)

	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)

