
The Procurement of Software Dependent Systems
Making Systems Reliable through Software Reliability 

Engineering Techniques
13th MoD R&M Specialists’ Seminar

April 3-4, 2003
Abbey Hotel

Malvern, Worcestershire, UK

Dr. David E. Peercy
Sandia National Laboratories

Chair, Society of Automotive Engineers G-11SW Committee
PO Box 5800, MS-0638

Albuquerque, New Mexico 87185-0638  USA
505-844-7965

depeerc@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.



Procurement of Software Dependant Systems 2April 3-4, 2003

Presentation Objective

Provide some thoughts and discussion on the 
following questions:

1. What is procurement of a system?
2. What makes a system software dependent?
3. What does software reliability have to do with 

procurement of a software dependent system?
4. Can you provide me with an example of such a 

procurement?



Procurement of Software Dependant Systems 3April 3-4, 2003

Topics

!Procurement of a Software Dependent System
" System Procurement and Software Dependence
" Goals & Objectives of a Software Reliability Program
" Examples of Software Failures

• Myth: Software Reliability = 1 (can’t fail)

!Software Reliability Program
" SAE G-11 Software Committee Standards/Guides

• JA1002, “Software Reliability Program Standard” July 1998.
• JA1003, “Software Reliability Program Implementation Guide” (2003 Draft)

" Principles: determine, meet, demonstrate customer requirements
" Framework: Plan-Case structure

!Case Study Example
" Aerospace Certification



Procurement of Software Dependant Systems 4April 3-4, 2003

System Procurement and 
Software Dependence

!What is procurement of a system?
" Buy it with a purchase request, support contract
" Build it through a contractual mechanism and development oversight

!What makes a system software dependent?
" The system can not meet its requirements without the functionality 

provided by the software component

" Dependency ranges from a low level to very high level of criticality

!What does software reliability have to do with 
procurement of a software dependent system?
" System might fail due to execution of a software fault: impact can 

range from low to a very critical

" So…. just how does one address this system failure due to software?



Procurement of Software Dependant Systems 5April 3-4, 2003

Goals and Objectives
Software Reliability Program

!Identify important software reliability issues
" related to the software engineering life cycle, system engineering life 

cycle, and the system/software reliability engineering activities

!Plan for & provide evidence of software reliability
" Understand methods for acquiring, engineering, and sustaining a 

software reliability capability
" Determine performance-based software reliability requirements

!Derive elements of a software reliability program
" Characteristics of design for reliability
" Characteristics of operational reliability
" Customer-supplier relationships: what’s good enough?

Given a system for which you must determine an 
approach to software reliability, you should be able to:



Procurement of Software Dependant Systems 6April 3-4, 2003

Some Questions of Interest

!Why should software reliability be emphasized?
!How much does software reliability engineering cost?
!What are software reliability performance measures?
! In what system engineering phases is it important to 

consider software reliability issues?
!What are software reliability activities?
!Who conducts software reliability activities?
!What should a customer expect a supplier to provide as 

evidence of software reliability?
!What role does a certification authority play in all this?



Procurement of Software Dependant Systems 7April 3-4, 2003

Software Failure Examples 

! Therac 25 Accidents (6), June 1985 - January 1987
! Airbus A320-211, September 14, 1993
! Ariane 501 Disaster, June 4, 1996
! Friendly Fire Deaths, March 2002
! Air-traffic control software reliability, May 2002
! Impact of inadequate software testing on US economy, June 2002
! Army Training Accident, June 2002
! Questions about New Air-Traffic Computer System, June 2002
! Software "glitch" Changes the Colour of the Universe, March 2002
! Fun with Microsoft error messages

http://catless.ncl.ac.uk/Risks
Peter Neumann, Stanford University Professor
RISK site provides a voluminous list of risks, many of which are computer/software related -
primarily interested in security and safety risks; summaries are provided with links to more detail.



Procurement of Software Dependant Systems 8April 3-4, 2003

SAE G-11SW
Software Reliability Program

!JA1002
" Published by SAE  in 1998
" Developed by G-11 RMSL Software Committee
" Copies available from SAE (http//www.sae.org)
" Basis for some aspects of example case study

!JA1003
" Implementation guide for JA1002
" Many methods and techniques are described along with application

guidance for a software reliability program
" Status - JA1003 full draft for ballot review by full G-11SW 

Software Committee in spring 2003

Example Plan and Case Templates



Procurement of Software Dependant Systems 9April 3-4, 2003

Why Set up a Software 
Reliability Program?

!Ensure product reliability meets user needs
" estimate/predict software and integrated system reliability

!Improve time to market for products
" detect and prevent propagation of development/support defects
" improve test process and reduce extraneous testing time

!Reduce product cost
" reduce defects, time to develop, and corrective maintenance
" improve productivity

!Improve customer satisfaction
" reduce delivered defects, target specific high priority areas

!Reduce/mitigate risks
" target specific high risk functional areas - safety, security
" reduce likelihood of defects being delivered to the customer



Procurement of Software Dependant Systems 10April 3-4, 2003

Customer-Supplier-
Certification Authority

Bottom Line
What [software reliability] evidence is appropriate for the product? 

How do we know this evidence is good enough?

Product
Requirements

Product
with

Certification

Certification
Requirements

Evidence for
Evaluation

Certification of
Conformance

Confirmation

CUSTOMER SUPPLIER

Graded
Formality

Certification
Authority



Procurement of Software Dependant Systems 11April 3-4, 2003

Conceptual Framework
Reliability Plan-Case

•Organization
•Design Reliability Tasks
•Operational Reliability Tasks
•Schedule/Deliverables

PROPOSAL PLAN

Requirements
Operational Profiles

Design Reliability Evidence
Operational Reliability Evidence

Appendices

PROPOSAL CASE

CONCEPT

DEVELOPMENT

PRODUCTION
ACCEPTANCE

OPERATION
&

SUPPPORTProgress 1
Development Case

Progress 2
Development Case

Progress 3
Development Case

In-Service
Case

•Life Cycle Concept
•Operational Profiles
•Historical Evidence



Procurement of Software Dependant Systems 12April 3-4, 2003

System Reliability Tasks

Hardware
Requirements

Analysis

System
Requirements
Analysis and

Design

Hardware
Preliminary

Design

Hardware
Detailed
Design

Fabrication HWCI Test System
Integration

and Test

Software
Requirements

Analysis

Software
Preliminary

Design

Software
Detailed
Design

Coding
and Unit

Test

Component
Integration

Test SWCI Test

System
Reliability

Requirements

System HW/
SW

Reliability
Model

System HW/
SW Reliability

Allocations

ReDesign Activity

Design Activity

HW/SW
Reliability

Predictions

Progress Evaluation

Assessment
Report

Program Review Board Activity

HW/SW Growth Testing

Evaluate Growth

HW/SW
Demo Test

Evaluate
Results

Assessment
Report

Design Correction

Reassign Resources

Not OK

To Pgm Manager
Engineering Manager

To Pgm Manager
Engineering Manager

Reallocation Needed



Procurement of Software Dependant Systems 13April 3-4, 2003

Bottom Line Objective
Reduce Programmatic Risk

!Program Decision Process
" Defect tracking/reliability tracking supports phase/iteration completion 

decision
" Defect tracking/reliability supports prioritization of activities

!Program Key Progress Parameters
" Defect tracking/reliability supports schedule progress estimation
" Early defect removal supports higher likelihood of meeting schedule

!Program Key Cost Parameters
" Defect tracking/reliability supports effort estimation
" Early defect removal means less rework in later phases

• factor of 10 by phase in effort to remove defects

!Program Quality Indicator
" Defect tracking/reliability provides a key indicator of product quality



Procurement of Software Dependant Systems 14April 3-4, 2003

Bottom Line Objective
Improve Customer Satisfaction

!Customer Issues
" Performance - Reliability/Meets Customer Expectations
" Schedule - On Time
" Effort - Within Budget
" Risk - Managed for Change



Procurement of Software Dependant Systems 15April 3-4, 2003

To Summarize

!Customer Focus
" balances customers’ reliability needs with their desire for functionality, low 

cost, and timely delivery

!Planning
" identifies which methods are used for defect prevention, detection, and 

removal throughout the life cycle in order to understand where defects are 
introduced and determine where failures might be triggered

!Case Evidence
" measures of defects and failures with respect to prevention, detection, and 

removal throughout the life cycle
" confidence level that the software will not contribute to any system failures 

over a specified time and specified operational use

Software reliability program provides:



Procurement of Software Dependant Systems 16April 3-4, 2003

Backup Slides
! Terminology (Reliability, Failure/Fault/Error)
! Software Failure Categories (RTCA DO178)
! System HW/SW Reliability Program Relationship
! Design for Reliability Focus
! Defects: across life cycle, release defect density; tracking defects, 

delivered defects
! SEI CMM Level, Example Methods, FMECA/FTA/FRACAS
! Operational Reliability Focus, Failure Intensity, Reliability Growth 

Model
! System/software reliability integration,  HW/SW Reliability (AND, 

OR), Simple Exercise
! Software Reliability Model (Musa), Equations,  Simple Example
! References



Case Study in Software Reliability



Procurement of Software Dependant Systems 18April 3-4, 2003

Case Study Objectives

!Define “Simple” Software Reliability Plan
" Customer and Supplier Viewpoint/FAA Certification Context 
" Define Elements of Software Reliability Plan
" Design Activities
" Test Activities
" Certification Activities
" Operational Activities
" Support Activities

!Provide Hypothetical Software Reliability Case
" Design Defect Data and Analysis
" Test Defect Data and Predicted Reliability
" Operational FRACAS data gathering and Estimated Reliability 

Growth
" Support Block Releases with Updated Reliability Predications



Procurement of Software Dependant Systems 19April 3-4, 2003

COCKPIT
DISPLAY

COCKPIT
DISPLAY

COCKPIT
DISPLAY

COCKPIT
DISPLAY

COCKPIT
CONTROLLER

COCKPIT
CONTROLLER

PO
W

ER
 S

U
PP

LY
M

O
D

U
LE

PR
O

C
ES

SO
R

M
O

D
U

LE

N
ET

W
O

R
K

M
O

D
U

LE

I\O
M

O
D

U
LE

D
A

TA
 S

TO
R

A
G

E
M

O
D

U
LE

PO
W

ER
 S

U
PP

LY
M

O
D

U
LE

PR
O

C
ES

SO
R

M
O

D
U

LE

N
ET

W
O

R
K

M
O

D
U

LE

I\O
M

O
D

U
LE

D
A

TA
 S

TO
R

A
G

E
M

O
D

U
LE

SENSORS,
ACTUATORS,
OTHER SYSTEMS

SENSORS,
ACTUATORS,
OTHER SYSTEMS

SY
ST

EM
 B

U
S

CABINET #1 CABINET #2

! Integrated Modular Avionics (IMA) hardware element

! “Load Control (LC)” software program is in a PROM 
in the Processor Module
" purpose is to load operational software into the Processor Module 

and ensure load is completed successfully

Example IMA System With 
Hardware Elements 



Procurement of Software Dependant Systems 20April 3-4, 2003

IMA Assumptions

! IMA Inc is Supplier/Manufacturer
" Delivers complete IMA - hardware element including Load Control SW
" Focus for this case study is on the Load Control software program delivered 

as part of the IMA element that enables the Processor Module to be loaded 
with operational software

!NSIA Air is Customer
" Establishes contractual relationship with IMA, Inc to receive IMA units for 

aircraft system integration during production builds
" Accepts IMA product in accordance with contractual acceptance criteria
" Performs appropriate systems integration, checkout, and flight testing during 

system design and production/manufacturing process

!FAA is Certification Authority
" Certifies to Technical Standard Order TSO-C153, IMA Hardware Elements

• Includes certification of the Load Control software to DO-178B requirements and alternative 
elements in accordance with the Certification Authorities Software Team (CAST) 
publication [CAST5-00] “Guidelines for Proposing Alternate Means of Compliance to DO-
178B,” June 2000.



Procurement of Software Dependant Systems 21April 3-4, 2003

NSIA Air and IMA,Inc Roles
!NSIA Air Customer

" Requires certification by FAA (HW and SW)
• Per TSO-C153

– If software to enable future software loading and/or electronic part marking is included in the 
hardware element, the software level applied under this TSO must be  commensurate with the 
installation safety assessment and documented in the installation procedures and limitations.

• Per RTCA DO178B for Load Control software
– Plan for Software Aspects of Certification (PSAC), Software Configuration Index, and Software 

Accomplishment Summary
• Per Various FAA Guidelines and CAST position papers (e.g., CAST-5, Alternatives)

" Requires certain Key Performance Parameters be met
• Per contractual agreement between NSIA Air and IMA
• One KPP is IMA reliability performance allocated to Load Control software

– Requires evidence of how the software reliability has been integrated into the KPP
• Requires Supplier Survey to review certification evidence & how the KPPs have been met

! IMA Contractor
" Develops and Supports IMA product; uses Product Service History data
" Coordinates with the NSIA Air contact at Aircraft Certification Office 

(ACO) – part of FAA Certification Authority
• Obtains IMA certification - including Load Control software

" Completes NSIA Air Supplier Contractual Requirements - Survey
• Specifically, provides SW reliability case evidence as part of the SW verification plan



Procurement of Software Dependant Systems 22April 3-4, 2003

Load Control Software 
Concept

! Initial delivery of the IMA unit
" Load Module software package in a PROM chip within the Processor

Module. 
" IMA Processor Module designed for operational software replacement; 

design is double NVRAM memory concept; initial operational software is 
loaded into NVRAM location #1; subsequent updated operational 
software is loaded into “other” NVRAM location. 

• First updated version of operational software is loaded by the Load Module software into 
NVRAM location 2 when activated by an external command to the Processor Module;  
next updated version is loaded in NVRAM location 1, and so forth. 

" When activated, the Load Module software
• authenticates the new operational software using digital signature technology
• loads the authenticated software into the “other NVRAM location” and switches the 

“active location” for the software to this NVRAM location.
• if load is successful sends “successful” message to the “external controller”
• if load is not successful, the “active location” is not changed and a “failed” message with 

applicable reason is sent to the “external controller”



Procurement of Software Dependant Systems 23April 3-4, 2003

Assumptions

!Load Control Software Level is “A”
" New functional design using digital signature technology
" Security and Safety concerns
" Functional importance of the Processor Module in relation to the IMA 

unit is considered to be Level A

!Load Control Software Estimates
" Requirements specification(~35 pages)
" Design specification (~100 pages)
" Source code is ~5,000 non-commented source lines of code (ncsloc) 

of C++ and around 17 function points
" V&V plan and results (combined, ~200 pages)
" Plan for Software Aspects of Certification/Qualification (~40 pages)
" Software Accomplishment Summary (~20 pages)
" Technical Order for Field User Guidance (~40 pages)



Procurement of Software Dependant Systems 24April 3-4, 2003

Determine FAA Involvement

!Level of FAA Involvement (LOFI) - MEDIUM
" Step 1: Software is assessed at Level A

• Level Of FAA Involvement (LOFI) is High or Medium
" Step 2: Complete Other Relevant Criteria

• Total Score Result (TSR) = 141, so LOFI is tentatively set at Medium
" Step 3: Any Exceptions?

• Software project has no issues that require new FAA policy, so LOFI is set at Medium

!Strategy Notes
" For Plan for Software Aspects of Certification (PSAC), include software 

reliability planning information matrix in general format for software 
reliability plan - reference more detailed mapping of DO178B appendices 
to the Plan

" For V&V Plan, use software reliability matrix evidence (reference details 
elsewhere) and general format for software reliability case - reference 
more detailed mapping of DO178B appendices to the Case

" For Software Accomplishments Summary (SAS), use summary per NSIA
Air acquisition contract so as to satisfy both the FAA Certification and 
NSIA Air - the ultimate user



Procurement of Software Dependant Systems 25April 3-4, 2003

NSIA Air Acquisition 
Approach

!Acquisition Contract
" Graded Formality Based on LOFI
" Certification Requirements, with caveats to include software 

reliability evidence as part of V&V evidence
" Key Performance Parameters Evidence - focus on software 

reliability assessment
" Supplier Survey Expectations - complete customer verification of 

all evidence
" Schedule, cost profiles based on estimated 5,000 ncsloc C++

• 26 person months, ~$300K, 18 months



Procurement of Software Dependant Systems 26April 3-4, 2003

Plan Elements

!Life Cycle Activities
" System: FMEA, FTA, Reliability Allocation
" Software Reliability allocation = 0.90 per execution hour, which

corresponds to approximately 2500 flight hours between 
operational software updates (which would involve execution of 
the Load Control software for approximately 15 seconds)

!Plan Matrix
" Columns:

• Life cycle activity, Reliability Activity, Claim, Evidence, Rationale, 
References to Details

" Rows:
• Requirements, Design, Code, Unit test, System/integration test, FAA 

Certification, NSIA Air Review Activities



Procurement of Software Dependant Systems 27April 3-4, 2003

Case Elements

!Specific Details of Life Cycle Analysis
" Inspection Data (defects, person hours, source of defects, estimate of defect removal efficiency)
" Testing Data (unit coverage, integration/system defect/operational time)
" Software Reliability KPP

• defect removal efficiency estimate (req,des,code,other)
• predicted defect delivery (based on Neufelder)
• estimated defect delivery (based on integration/system testing data) - Motorola demo
• estimated operational failure rate (based on reliability growth model-Motorola)

" FAA Certification Involvement
• Reviews
• Analysis
• Certification Approval



Procurement of Software Dependant Systems 28April 3-4, 2003

Example Inspection Data
Review/

Test
Activity

Size Total # 
Defects

Major 
Defects

Total 
Person 
Hours

Major 
Defect 
Density

#Major
Source 

SRS

#Major
Source 
SDD

#Major
Source 
Code

#Major
Source 
SVP

SRS 30 pages 75 12 30 0.16 12 0 0 0

SDD 90 pages 123 45 40 0.37 4 41 0 0

Code 4500 
ncsloc

158 72 112 16.0 4 6 62 0

SVP 190 
pages

122 60 80 0.31 1 7 15 37

Totals N/A 364 59 262 N/A 21 54 77 37

DRE
Known
Prior to 

Test

0.57 0.76 0.81 1.00



Procurement of Software Dependant Systems 29April 3-4, 2003

Example Inspection Data 
with Results of Testing

Review/
Test

Activity

Size Total # 
Defects

Major 
Defects

Total 
Person 
Hours

Major 
Defect 
Density

#Major
Source 
SRS

#Major
Source 
SDD

#Major
Source 
Code

#Major
Source 
SVP

#Major
Source 
Unit 
Test

#Major
Source 

Sys 
Test

SRS 30 
pages

75 12 30 0.16 12 0 0 0 0 0

SDD 90 
pages

123 45 40 0.37 4 41 0 0 0 0

Code 4500 
ncsloc

158 72 112 16.0 4 6 62 0 0 0

SVP 190 
pages

122 60 80 0.31 1 7 15 37 0 0

Totals N/A 364 59 262 N/A 21 54 77 37 0 0

DRE
Known
Prior to 

Test

0.57 0.76 0.81 1.00 0 0

Unit 
Test

4500
ncsloc

78 27 250 5.55 1 4 18 2 2 0

SysTest 4500
ncsloc

84 57 25.0 12.67 1 11 31 2 6 2

DRE 
Known 
After 
Test

0.52 0.59 0.55 0.95 0.25 1.00



Procurement of Software Dependant Systems 30April 3-4, 2003

Example System/Integration 
Test Data

Test Phase Failures
(Total)

Failures
(Major)

Execution 
Test Time

MDefects
Source 

SRS

MDefects
Source 
SDD

MDefects
Source 
Code

MDefects
Source 
SVP

MDefects
Source 

UnitTest

MDefects
Source 
SysTest

SysTest1 25 15 0.5 2 2 8 1 1 1

Sys Test2 15 12 0.5 1 1 6 1 2 1

Sys Test3 11 10 1.0 0 2 7 0 1 0

Sys Test4 10 8 2.0 1 1 4 0 2 0

Sys Test5 7 3 1.0 0 1 2 0 0 0

Sys Test6 10 5 3.0 0 1 4 0 0 0

Sys Test7 4 3 5.0 0 0 3 0 0 0

Sys Test8 1 1 7.0 0 0 1 0 0 0

Sys Test9 1 0 5.0 0 0 0 0 0 0

Totals 84 57 25.0 4 8 35 2 6 2



Procurement of Software Dependant Systems 31April 3-4, 2003

Plot of Defect Data by 
Activity

0

20

40

60

80

100

120

140

Req Des Code Test
Plan

Unit
Test

Sys
Test1

Sys
Test2

Sys
Test3

Major Defects



Procurement of Software Dependant Systems 32April 3-4, 2003

Example Defect Removal 
Efficiency

0.00

10.00
20.00
30.00
40.00

50.00
60.00

70.00
80.00

90.00
100.00

Req Des Code Test
Plan

Unit
Test

Sys
Test1

Sys
Test2

Sys
Test3

Defect Removal
Efficiency

Note:  this “efficiency” is just in removing potential defects in the artifact being reviewed or tested



Procurement of Software Dependant Systems 33April 3-4, 2003

Example Reliability 
Calculations

!Predicted Delivery Defect Density [Neufelder]
" Process Score = X = sum of scores on 125 parameters (~1400 to 2800 range)
" Predicted Delivered Defect Density per KNCSLOC(assembler) = Da
" Da = 0.00000017*X2 – 0.00100439*X + 1.58463875
" DL = a* Da = predicted delivered defect density in KNSLOC for language 

“L”; a = ~ 7 for C++
" Assuming for IMA, the process score X = 2330 (LOFI based) we compute:

• Da = 0.16732   DC++ = 7* 0.16732 = 1.1713

!Converting to Reliability
" N0 = Inherent # delivered defects = DC++*4.5 = ~5.27
" Q = Ratio between N0 and failures per time based on historical data/testing 

data (~0.254 for IMA testing) = ~ 20.75
" λ(t) = N0 * exp(-Q*t/ N0 ) / t = 5.27 * exp (-20.75t/5.27)/t
" R(t) = exp (- λt) 
" For t = 1 cpu hr, λ(t) = 5.27 * exp (-20.75/5.27) = ~0.103
" R = exp (-0.103) = ~0.902 – which would meet the reliability goal of 0.90

Neufelder, “The Naked Truth About Software Engineering in the Semiconductor Equipment Industry-Revision 3,” 2002 published by SoftRel



Procurement of Software Dependant Systems 34April 3-4, 2003

Example Reliability 
Calculations

!Predicted Delivery Failure Rate [Musa]
" Using the Test Data a few slides back

" Need to have two estimated values
• Initial failure rate: λ0 (use initial test data: 15/0.5 = 27 per cpu hour
• Total expected failures (System test + Operational Use: ν0 ~60)

Test Phase Failures
(Total)

Failures
(Major)

Execution Test Time

SysTest1 25 15 0.5

Sys Test2 15 12 0.5

Sys Test3 11 10 1.0

Sys Test4 10 8 2.0

Sys Test5 7 3 1.0

Sys Test6 10 5 3.0

Sys Test7 4 3 5.0

Sys Test8 1 1 7.0

Sys Test9 1 0 5.0

Totals 84 57 25.0



Procurement of Software Dependant Systems 35April 3-4, 2003

Example Reliability 
Calculations

!Predicted Delivery Failure Rate [Musa]
" λ0 = 30 per cpu hour; ν0 = 60; t = 25 cpu hr

" λ(t) = λ0 * exp [- (λ0 / ν0)*25] = 30*exp[-(30/60)*25] = 0.000112
" For t= 1 hr, R = exp (- λt) = exp (-0.000112) = 0.999888

!Simple Motorola Model
" Build data set to match test data
" Check out 1/MTTF (delivered failure rate)
" Check out graphs
" Check out correlation/confidence
" Comparison with Musa Model results



Procurement of Software Dependant Systems 36April 3-4, 2003

FRACAS and Support Data 
Collection

!Development Transitions to In-Service Support

Figure 6.4.1 Basic SW Reliability ProcessFigure 6.4.1 Basic SW Reliability Process

DesignDesignDesign

Prediction &
Complexity

Prediction &
Complexity

FRACASFRACASFRACASTestingTestingTesting Delivered
Product
DeliveredDelivered
ProductProduct

Path 
Assessment

Path 
Assessment

Demonstrated 
Reliability & Growth
Demonstrated Demonstrated 
Reliability & GrowthReliability & Growth

Figure 6.4.1 Basic SW Reliability ProcessFigure 6.4.1 Basic SW Reliability Process

DesignDesignDesign

Prediction &
Complexity

Prediction &
Complexity

FRACASFRACASFRACASTestingTestingTesting Delivered
Product
DeliveredDelivered
ProductProduct

Path 
Assessment

Path 
Assessment

Demonstrated 
Reliability & Growth
Demonstrated Demonstrated 
Reliability & GrowthReliability & Growth

Figure 6.4.1 Basic SW Reliability ProcessFigure 6.4.1 Basic SW Reliability Process

DesignDesignDesign

Prediction &
Complexity

Prediction &
Complexity

FRACASFRACASFRACASTestingTestingTesting Delivered
Product
DeliveredDelivered
ProductProduct

Path 
Assessment

Path 
Assessment

Demonstrated 
Reliability & Growth
Demonstrated Demonstrated 
Reliability & GrowthReliability & Growth



Procurement of Software Dependant Systems 37April 3-4, 2003

FRACAS and Support Data 
Collection

!FRACAS Data Collection Supports a Sustained 
Reliability Program During In-Service

!Establishes a Service History Record

Time - hours

Estimated R at Block 1 release 

Failure rate without new 
design or specification 

Blk 1 Blk 2 Blk 3 Blk n

Effect of added code 



Procurement of Software Dependant Systems 38April 3-4, 2003

FAA and NSIA Air Reviews

!Initial Review
" PSAC Plan Matrix
" NSIA Air negotiation for reliability planning information
" NSIA Air supplier survey for “Top 10 practices”

• Information from ASE assessment of software level and other criteria 
acceptable

!Verification Reviews
" Inspection Data
" Testing Data
" Reliability Data
" NSIA Air check of KPP

!Final Certification Review
" SAS
" Certification Approval



Procurement of Software Dependant Systems 39April 3-4, 2003

Case Study Summary

!Customer
" Select Acquisition Approach based on Graded Formality
" Determine Formality based on FAA LOFI Guidance
" Piggyback on Certification Evidence
" Consider breadth of life cycle data as software reliability evidence

!Supplier
" Negotiate with customer(s) concerning requirements

• Determine, meet, demonstrate
" Use framework of Certification Plan (PSAC) and Case (SVP, Verification 

Test) augmented by Software Reliability Plan/Case evidence as 
appropriate

!Certification Authority
" May be Customer, May be FAA
" DO-178B is primarily a qualitative process assessment, should augment 

evidence with additional safety and reliability evidence for critical 
applications

" FAA Guidelines provide steps, but tailoring is recommended



Procurement of Software Dependant Systems 40April 3-4, 2003

Discussion Q&A

!The Floor is Open!  Thoughts, Questions? 
" How can illustrated case study approaches be used in your 

applications?
" Which methods seem to be applicable to your work?
" What are the Cost implications?

System Surety

Certification Authority

SupplierCustomer



Procurement of Software Dependant Systems 41April 3-4, 2003

Backup Slides
! Terminology (Reliability, Failure/Fault/Error)
! Software Failure Categories (RTCA DO178)
! System HW/SW Reliability Program Relationship
! Design for Reliability Focus
! Defects: across life cycle, release defect density; tracking defects, 

delivered defects
! SEI CMM Level, Example Methods, FMECA/FTA/FRACAS
! Operational Reliability Focus, Failure Intensity, Reliability Growth 

Model
! System/software reliability integration,  HW/SW Reliability (AND, 

OR), Simple Exercise
! Software Reliability Model (Musa), Equations,  Simple Example
! References



Procurement of Software Dependant Systems 42April 3-4, 2003

Terminology

!Operational Profile
" the set of functions a computer program is required to perform - further 

broken down by input data when it affects execution - along with the 
probabilities of occurrence

!Failure Intensity:
" the number of failures occurring in a given time period (e.g., 1000 CPU 

hours, 1000 calendar hours)

!Fault Density:
" number of faults per unit; unit might be source lines of code, function 

points, components, etc.



Procurement of Software Dependant Systems 43April 3-4, 2003

Failure, Fault, Error Concept

Fault
Q

Fault
R

Code

U, V, W, X Runs
1, 2, 3 Discrepancies (variation of expected from actual) 
U1, V1 , W2 , X3 Failures (discrepancy that does not satisfy user requirement)

U

V

W

X

Execution Time

1

1

2

3

Documentation

U1

V1

W2

X3



Procurement of Software Dependant Systems 44April 3-4, 2003

Software Failure
Severity Categories(RTCA/DO178B)

Category Severity Description

1 Catastrophic Failure conditions which would prevent continued safe flight
and landing.

2 Hazardous/Severe
-Major

Failure conditions which would reduce the capability of the
aircraft or the ability of the crew to cope with adverse operating
conditions to the extent that there would be:
- large reduction in safety margins or functional capabilities
- physical distress or higher workload such that the flight

crew could not be relied on to perform their tasks accurately
or completely

- adverse effects on occupants including serious or
potentially fatal injuries to a small number of those
occupants

3 Major ditto intro statement as in #2
- significant reduction in safety margins or functional

capabilities
- significant increase in crew workload or conditions

impairing crew efficiency
- discomfort to occupants, possibly including injuries

4 Minor Failure conditions which would not significantly reduce aircraft
safety, and which would involve crew actions that are well
within their capabilities.  "Slight" rather than "significant"

5 No effect Failure conditions which do not affect the operational
capability of the aircraft or increase crew workload.



Procurement of Software Dependant Systems 45April 3-4, 2003

Top Ten Practices
Correlated to Defect Density

Practice Correlation to 
Defect Density 

Phase of SW 
Life Cycle 

All requirements are mapped to system tests -0.891739 Requirements 
Requirements are reviewed before designing or coding -0.851721 Requirements 
System test beds are used -0.847479 Testing 
Test plan started at least one phase of the life cycle before 
testing begins 

-0.823243 All up to 
testing 

Testers use a FRACAS (defect tracking system) to determine 
what to test/retest 

-0.806090 Testing 

All upgrades made after a system test are regression tested -0.782629 Maintenance 
Corrective action releases per year <= 4 -0.777758 Maintenance 
All modifications made after a system test are regression tested -0.773434 Testing 
FRACAS used for tracking all corrective actions -0.746663 Maintenance 
Walk-thrus are performed for all phases of life cycle -0.743187 All phases 

 

Neufelder has developed a predictive model with 125 development practices 
correlated to lower delivered defects. [NEUFELDER]



Procurement of Software Dependant Systems 46April 3-4, 2003

Design for Reliability Focus

!Improve Software Design Characteristics
" the set of attributes that bear on the capability of software to maintain its 

level of performance under stated conditions for a stated period of time

! Implement System and Software Engineering Practices
" life cycle activity defect reduction and prevention

• requirements, design, implementation, test, operation, support

" process improvement to reduce likelihood of product defects
• SEI SW-CMM, Software Capability Maturity Model
• ISO SPICE, Software Process Improvement Capability Determination
• Practice standards and guidelines: Software Reliability Plan and Case
• Software Operational Reliability Engineering Program

!Track Design Measurement Defect Data
" inspection defect data
" defect density
" percentage defect removal efficiency for each life cycle phase



Procurement of Software Dependant Systems 47April 3-4, 2003

Defects & Failures per Unit Time 
Across the Life Cycle

The biggest challenge of software reliability today is to adequately correlate design for reliability 
parameters with operational reliability in a predictive manner.

Defects per Unit Time
&

Failures per Unit Time

0
1
2
3
4

Req Design Code Test B1 B2 B3 B4 B5

Major Defect/
Unit Time (hrs)

Test / Operational ProcessInspection Process Predicts?



Procurement of Software Dependant Systems 48April 3-4, 2003

Defect Density by Release

!Defects Over Time - Defect Tracking
" Example: Tracking Defect Density by Release over Time

1.0

2.0

3.0

4.0

5.0

90 91 92 93 94

Goal
Results

Defects
per

K lines
of code



Procurement of Software Dependant Systems 49April 3-4, 2003

Tracking Defects and 
Problems

!Defects Over Time - Defect Tracking
" Example: Cumulative Defects

Number
of

Defects

Test Time

Total Defects
Defects DiscoveredResidual Defects

Number
of

Problems

Project/Iteration Time

Problems Discovered
Closed Problems

Open Problems



Procurement of Software Dependant Systems 50April 3-4, 2003

Delivered Defects

!Defects Over Time - Defect Tracking
" Example: Tracking Delivered Defects by Maturity Level [JONES]

" Example:  Defect Removal Efficiency by Life Cycle Activity
Defect Removal Activity Defect Removal Efficiency

Informal design reviews 25% to 40%
Formal design inspections 45% to 65%
Informal code reviews 20% to 35%
Formal code inspections 45% to 70%
Unit test 15% to 50%
New function test 20% to 35%
Regression test 15% to 30%
Integration test 25% to 40%
System test 25% to 55%
Low-volume Beta test (< 10 clients) 25% to 40%
High-volume Beta test (> 1000 clients) 60% to 85%

SEL CMM
Level

RTCA DO178B
Level

Injected
Defects/KSLOC

Delivered
Defects/KSLOC

5 A 7.8 0.39

4 B 15.6 1.09

3 C 31.2 2.1

2 D 62.4 3.4

1 E 124.8 5.8

All Phases Total:
Military Average:         0.96
System Software:         0.94
Commercial Software: 0.90
MIS:                             0.73



Procurement of Software Dependant Systems 51April 3-4, 2003

SEI CMM Level
Defect & Effort Data Relationships

I 29.8 593.5 1348 61 $5,440K
II 18.5 143.0 328 12 $1,311K
III 15.2 79.5 182 7 $   728K
IV 12.5 42.8 97 5 $   392K
V 9.0 16.0 37 1 $   146K
Krasner Consulting, 1991, typical 200 kncsloc project

Maturity
Level

Calendar
Months

Effort in
Person
Months

Defects
Found

Defects
Shipped

Total $
Median Case

Message: the higher the maturity level, the more cost 
effective and reliable the delivered software product.

NOTE:  RTCA DO178B Levels of A, B, C, D, E correspond (for a 
project) roughly to the SEI maturity levels V, IV, III, II, I



Procurement of Software Dependant Systems 52April 3-4, 2003

Example Methods & Techniques*

I.  Analysis Techniques
change impact analysis
common cause failure analysis
formal scenario analysis
FRACAS
Petri nets
reliability block diagrams
reliability estimation modeling
response time, memory,
constraint analysis
FMECA
FTA
sneak circuit analysis

III.  Verification Techniques
boundary value analysis
cleanroom
equivalence class partitioning
formal code inspections (Fagan)
functional testing
interface testing
peer reviews
performance testing
probabilistic testing
regression testing
reliability growth testing
root cause analysis
stress testing
testability analysis, fault injection,
failure assertion
usability testing

II.  Design Techniques
block recovery
degraded mode operations
defensive programming
diversity
error detection/correction
fault tolerant design
information hiding
reliability allocation
design by contract

* - JA1003, “Software Reliability Program Implementation Guide,” SAE G-11SW Draft, July 2002.



Procurement of Software Dependant Systems 53April 3-4, 2003

Software FMECA/FTA/FRACAS

!FMECA
" Proactive approach used for determining the potential failure 

modes of a system/equipment (including software), all likely ways 
in which a component or equipment can fail, causes for each 
failure mode, and effects/criticality of each failure mode.

!FTA
" An extension of the FMECA activity in that the identified potential 

system failure modes are analyzed in terms of what potential faults 
(single point of failure) or multiple faults (multiple points of
failure) might result in the potential system failure mode

!FRACAS
" Reactive approach used for tracking failures and determining the 

real failure modes of the system/equipment through root cause 
analysis.



Procurement of Software Dependant Systems 54April 3-4, 2003

Operational Reliability Focus

!Improve Software Operational Performance
" the probability that software will not cause the failure of a system 

for a specified time under specified environment conditions

!Implement Software Operational Reliability 
Engineering Program
" Tailor program to application domain and organization
" Reliability-based test architecture: operational profiles
" Reliability-based measurement: defect collection, analysis during 

test, operation, and support; failure rates; confidence limits
" Reliability-base risk decision system: when to ship, risks

!Apply Software Reliability Methods
" System reliability allocation and prediction
" Software reliability estimation (data) and prediction (models)



Procurement of Software Dependant Systems 55April 3-4, 2003

Failure Intensity

!Failure Intensity
" The number of failures occurring in a given time period
" Example: 1 failure per 1000 operational hours

Prog ram Exec ution Time  (Cumulative )

Failure 
Inte ns ity

Obs erved Failures  in Each Time Interval 
(Failures /Unit Time  or Failure  Intens ity)

Current Failure  Intens ity

Failu re In te nsity Ob jective

Prediction Mode l

NOTE:  assumes defects are being removed over time



Procurement of Software Dependant Systems 56April 3-4, 2003

Reliability Growth Model

!Reliability Growth Model
" the probability of failure-free operation in a specified environment for a 

specified period of time [MUSA]
" example: Exponential

0

20

40

60

80

100

120

0 4 8

12 16 20 24 28 32 36 40µ (t) = ν
0 [1 - exp[- [λ 0 /ν 0 ] t] ]

ν
0

µ (t)

t 0

2

4

6

8

10

12

0 2 4 6 8

10 12 14 16 18 20

λ
0

t

λ (t)

λ (t) = λ
0

exp[- (λ
0

/ν
0

) t]

Reliability = e-λt



Procurement of Software Dependant Systems 57April 3-4, 2003

System/Software Reliability
Integrating SW and HW

!Step 1:  Block Diagram
" Divide system into block components for reliability analysis

!Step 2:  Allocation
" Allocate system reliability objectives to components by operational 

scenarios
" Allocate to HW/SW components using parallel/series models

!Step 3:  Predication
" Conduct trade-offs with HW/SW to determine best approach to 

meeting reliability allocations
" Select/develop HW/SW components to satisfy reliability 

allocations;  use fitted data models for estimation and reliability 
growth models for prediction



Procurement of Software Dependant Systems 58April 3-4, 2003

Combining HW/SW Components 
to Compute Reliability

!Computational Component
" Component with both hardware and software parts of which the 

software part may be composed of non-developmental and newly 
developed parts

" Component parts are considered to be serial elements for reliability 
computation purposes;  if any part fails, the component fails

" More complicated versions can be constructed



Procurement of Software Dependant Systems 59April 3-4, 2003

Combining HW/SW Components to 
Compute Reliability: “AND” “OR”

! “AND” Configuration
" “AND” part functions only 

when ALL components are 
functioning:  SERIAL

" R = R1*R2*R3*…*Rk
" Example

! “OR” Configuration
" “OR” part functions when any of 

the components are functioning
" R = 1-F = 1-F1*F2*F3*…*Fk

= 1 - (1-R1)*(1-R2)…(1-Rk)
" Example

PC (HW) OS (SW) AP (SW)

"AND" Configuration

R1=0.99 R2=0.98 R3=0.97

R = R1*R2*R3 = 0.99*0.98*0.97 = 0.94

PC (HW) OS (SW) AP (SW)

"OR" Configuration

RT1=0.99 RT2=0.98 RT3=0.97

R = [1- FT*FB] = [1 - (1-RT)(1-RB)] =[1-(1-.94)(1-.94)] = [1-0.06*0.06] = [1-0.0036] = 0.996

PC (HW) OS (SW) AP (SW)

RB1=0.99 RB2=0.98 RB3=0.97

T

B



Procurement of Software Dependant Systems 60April 3-4, 2003

Simple Example/Exercise

!Given Block Diagram for 
Automobile Anti-lock 
Braking System (ABS)

!Suppose the following 
reliability values are 
known;
" R (brakes) = Rb =  0.94
" R (pressure sensors) = Rs=  0.96
" R (PROM) = Rp=  0.91
" R (application software) = Ra=  0.90

!Compute System R

 HW Subsystem

 HW Subsystem

     
      Brakes

    Pressure
    Sensors

Decision Controls

Application
  Software

 SW Subsystem

HW/SW Subsystem

    PROM

 HW Subsystem

R = [1 – (1-Rb)(1-Rs)] * Rp * Ra = [1-(1-0.94)(1-0.96)] * 0.91 * 0.90 = [0.9976]*0.91*0.90 = 0.8170344



Procurement of Software Dependant Systems 61April 3-4, 2003

Software Reliability Models
!History

" 1970s: Jelinski-Morana, Shooman, Schick& Wolverton models
" 1973: John Musa, Bell Laboratories, began his work
" 1980s: Glory years of model research: Littlewood, Goel, etc
" 1990s: The hard part - trying to apply models & get results

!Illustrate Musa’s Models
" Musa: Non-Homogeneous Poisson Process Exponential

• Effective for System Test use
" Musa: Non-Homogeneous Poisson Process Logarithmic

• Effective for Field Operational use

!Modeling Cost [MUSA99]
" 0.1-0.2% of project cost
" Includes ALL SRE activity, not just Supportability-specific uses
" Includes training, data collection, analysis



Procurement of Software Dependant Systems 62April 3-4, 2003

Model Types and Equations

 Exponential  Loga rithmic

 Failure s  Experie nced 
(Expected) 
  
P re s ent Failure  Intensity 
(Function of Fa ilures ) 
 
P re s ent Failure  Intensity 
(Function of Time ) 
 
Additiona l Time  to Fa ilure 
Inte nsity Objective 
 
Additiona l Fa ilures  to 
Inte nsity Objective 
 
Reliability 
(No Fa ilures  Corrected)

λ(τ) = λ0 
e
−λ0 τν0

µ(τ) = ν0 (1 − e        )
−λ0 τν0 µ(τ) =       ln(λ0 θτ + 1)1

θ

λ(µ) = λ0 (1 −      )
µ
ν0

λ(µ) = λ0
 e −θµ

λ(τ) = λ0

λ0 θτ + 1

∆µ =      (λP − λF)
ν0
λ0

∆τ =       ln(    )   ν0
λ0 λF

 
λP  

λF
 

1
λP

 
1∆τ =       (    −    )   1

θ

λF 
λP  ∆µ =      λν(      )1

θ

−λτ
R(τ) = e



Procurement of Software Dependant Systems 63April 3-4, 2003

Basic Formula Terms

 µ = fa ilures  expe rie nce d (expe cte d)

 ∆µ = a dditional failure s (expe cte d)

 τ  = e xe cution time

 ∆τ = a dditional exe cution time

 λ0 = initia l fa ilure inte ns ity  -  (mus t be  e s tima ted)

 λP
 = pres ent fa ilure inte ns ity

 λF = fa ilure inte ns ity objective

 ν0
 = tota l fa ilure s (expe cte d)  -  (mus t be e stima te d)

 θ = fa ilure inte ns ity reduction (decay) ra te   -  (mus t be e stima te d, 
   nomina l values  = .02/failure   -  .05/fa ilure)

0



Procurement of Software Dependant Systems 64April 3-4, 2003

Computational Exercise

 = 500[1-exp [-27*10/500]] = 208.62587 ~ 209 failures 

  =  27 [1 – 209/500] = 15.714 failures per hour at t=10 hours 

Given that  ν0 = 500  λ0 = 27/hr  λP = 15/hr    λF =  0.5/hr   and    t = 10 

Compute (Exponential Model) 
 
µ(t)  = ν0[1 – exp [-λ0 t /ν0]] = expected number of current failures experienced at time t

 
 
λ(t)  =  λ0 [1 - µ/ν0] = expected failure intensity/rate at the current time t 

 
 
∆µ   =  [ν0/ λ0] [λP - λF] = expected additional failures to reach failure intensity 
objective 
 
 
∆t    =  [ν0/ λ0] ln [λP/λF] = expected additional time to reach failure intensity objective 

objective
 =  [500/27][15 – 0.5] = 268.51852 ~ 269 more failures to reach objective of 0.5/hr 

= [500/27] ln[15/0.15] = 62.985137 ~ 63 hours more testing to reach objective of 0.5/hr 



Procurement of Software Dependant Systems 65April 3-4, 2003

References

! [DEMARCO]  DeMarco, T., Controlling Software Projects, Yourdon Inc., 
New York, NY, 1982.

! [IEEE87]  IEEE Standard, “A Standard Classification of Software Errors, 
Faults, and Failures,” Technical Committee on Software Engineering, 
Standard P-1044/D3, December 1987.

! [JONES]  Jones, C., “Conflict and Litigation Between Software Clients and 
Developers,” Version 1 -- March 4, 1996.

! [LEUNG]  Leung, H., “Improving Defect Removal Effectiveness for Software 
Development,” Department of Computing, Hong Kong Polytechnic 
University.

! [LYU]  Lyu, M., Software Reliability Engineering, IEEE Computer Society 
Press, McGraw-Hill, New York, NY, 1996.

! [MUSA]  Musa, J., Software Reliability Engineering, McGraw-Hill, New 
Your, NY, 1999.

! [NEUFELDER] Neufelder Owner, A., N., “The Facts About Predicting 
Software Defects and Reliability,” Journal of the RAC, 2ndQ, 2002, pp 1-4.

! [NEUFELDER-LAKEY] Lakey, Neufelder, “System Software Reliability 
Assurance Guidebook,” Rome Laboratory, 1995.



Procurement of Software Dependant SystemsApril 3-4, 2003

Appendix A

Glossary



Appendix A: Glossary of Terms  2/21/2003 3:53 PM 

 Page 2 of 9 

 
 
 
 
 



Appendix A: Glossary of Terms  2/21/2003 3:53 PM 

 Page 3 of 9 

A. Glossary of Terms 
A.1 Primary Acronyms 

AIAA American Institute of Aeronautics and Astronautics 
AIR  Aerospace Information Report 
ANSI American National Standards Institute 
ARMP Allied Reliability and Maintainability Publication 
ASIC Application Specific Integrated Circuit 
BSI  British Standards Institute 
CMMI Capability Maturity Model Integrated 
COTS Commercial Off-The-Shelf 
DACS Data and Analysis Center for Software 
DND Department of National Defence (Canada) 
DoD Department of Defense 
DSI  Delivered Source Instructions 
EIA  Electronics Industries Alliance 
FAA Federal Aviation Administration 
FIR  Formal In-Process Review 
FMECA Failure Modes, Effects and Criticality Analysis 
FRACAS Failure Reporting and Corrective Action System 
FTA Fault Tree Analysis 
GQM Goal, Question, Metric 
HCI  Human Computer Interface 
I4  Independence, Isolation, Interoperability, Inoperability 
IEC  International Electrotechnical Commission 
IEEE Institute of Electrical and Electronic Engineers 
ISO  International Organization for Standardization 
IVAN Independent Vulnerability ANalysis 
JA  Two character code for SAE ground vehicle (J) and aerospace (A) standards and 
guidelines 
KSLOC Thousands (K) of Source Lines of Code 
MISRA Motor Industry Software Reliability Association 
MOD Ministry Of Defence (United Kingdom) 
NATO North Atlantic Treaty Organization 
NCSLOC Non-Commented Source Lines of Code 
NDI  Non-Developmental Item 
NIST National Institute of Standards and Technology 
OTS Off-The-Shelf 
QA  Quality Assurance 
QFD Quality Function Deployment 
R&M Reliability and Maintainability 
RAC Reliability Analysis Center 
RMSL Reliability, Maintainability, Supportability, Logistics 
SAE Society of Automotive Engineers 
SEI  Software Engineering Institute 



Appendix A: Glossary of Terms  2/21/2003 3:53 PM 

 Page 4 of 9 

SFMECA Software FMECA 
SFTA Software FTA 
SLOC Source Lines of Code 
SRE Software Reliability Engineering 
UK  United Kingdom 
V&V Verification and Validation 

 



Appendix A: Glossary of Terms  2/21/2003 3:53 PM 

 Page 5 of 9 

A.2 Primary Definitions 
The following key terms are defined.  Reference [IEEE610] is a generally applicable reference for software 
terms not defined in this section. Some terms apply only to software, but many terms apply more generally 
to a system of which software is a component.  The specific source of the definitions in this section is 
referenced as follows: 
[0] term defined by its use in the guide [JA1003] 
[1] reference [AIAAR013] 
[2] reference [JA1002] 
[3] reference [JA1000-1] 
[4] reference [ISO12207] 
[5] reference [MUSA99] 
[6] reference [JA1005] 
[7] reference [DO178B] 
[8] reference [MILSTD882D] 
 
Acquirer[4]: An organization that procures a system, software product or software service from a supplier.  
NOTE-The acquirer could be one of the following: buyer, owner, user, purchaser. 

Certification[7]: Legal recognition by the certification authority that a product, service, organization or 
person complies with the requirements.  Such certification comprises the activity of technically checking 
the product, service, organization or person and the formal recognition of compliance with the applicable 
requirements by issue of a certificate, license, approval or other documents as required by national laws and 
procedures. 

Certification Authority/Regulator [7]: The organization or person responsible within the state or country 
concerned with the certification of compliance with the requirements. 

Contract[4]: A binding agreement between two parties, especially enforceable by law, or a similar internal 
agreement wholly within an organization, for the supply of software service or for the supply, development, 
production, operation, or maintenance of a software product. 

Coverage[0]: The ratio of actual to possible software features/functions, requirements, statements, and/or 
branches/paths that are exercised during one or more test cases.  Types of coverage can be categorized by 
the unit, e.g., feature coverage, requirements coverage, statement coverage, path coverage.  

Customer[0]:  see Acquirer. 

Defect[0]:  Any condition in a software artifact (e.g., specification, code, test) that if left unchanged could 
result in a software failure.  Defect and fault are sometimes considered to be synonymous although fault is 
more strictly considered to be a defect in the code. 

Dependability[0]:  See Surety. 

Design Reliability[0]: (1) The set of activities that focus on the prevention, detection, prediction, 
estimation, and/or mitigation of defects in software specifications (e.g., user guide, requirements, design, 
code, test plan/cases). (2) A measure of the remaining defects in software specifications at a specific 
reference point. (3) A measure of the predicted software reliability at a specific reference point. 

Developer[4]: An organization that performs development activities (including requirements analysis, 
design, testing through acceptance) during the software life cycle process. 

Error[1]: (1) A discrepancy between a computed, observed or measured value or condition and the true, 
specified or theoretically correct value or condition. (2) Human action that results in software containing a 
fault. 

Failure[1]:  (1) The inability of a system or system component to perform a required function within 
specified limits.  A failure may be produced when a fault is encountered and a loss of the expected service 
to the user results. (2) The termination of the ability of a functional unit to perform its required function. (3) 
A departure of program operation from program requirements. 



Appendix A: Glossary of Terms  2/21/2003 3:53 PM 

 Page 6 of 9 

Failure Intensity[5]: see Failure Rate. 

Failure Modes, Effects and Criticality Analysis [3]: A proactive approach used for determining the 
potential failure modes of a system/equipment (including software), all likely ways in which a component 
or equipment can fail, causes for each failure mode, and effects/criticality of each failure mode. 

Failure Rate[1]: (1) The ratio of the number of failures of a given category or severity to a given period of 
time; for example failures per second of execution time, failures per month.  Synonymous with failure 
intensity. (2) The ratio of the number of failures to a per unit of time, failures per number of transactions, 
failures per number of computer runs. 

Failure Reporting and Corrective Action System [3]: A set of processes, procedures, and tools for 
reporting, reviewing, analyzing, correcting, and storing information about system/software failures. 

Failure Severity[adapted from 1]: A rating system for the impact of every recognized credible failure 
mode. 

Fault Tolerance[1]: The survival attribute of a system that allows it to deliver the required service after 
faults have manifested themselves within the system. 

Fault Tree Analysis [3]: An analysis technique where identified potential system failure modes are 
analyzed in terms of what potential software faults (single point of failure) or multiple faults (multiple 
points of failure) might result in the potential failure mode. 

I4- Independence, Isolation, Interoperability, Inoperability[0]: 

Independence - multiple, independent subsystems and completely different sources of 
enabling stimuli for critical functions are incorporated within the system 

Isolation - critical functions are encapsulated separate from any other functions that might 
cause undefined interactions with the critical functions 

Interoperability - critical functions become predictably and irreversibly inoperable in 
credible abnormal operating environments before the isolation features are 
compromised 

Inoperability - functional interfaces are constructed so that they are incompatible with 
functions (in particular safety critical functions) with which they are not 
intended to interface 

Life Cycle Model[4]: A framework containing the processes, activities, and tasks involved in the 
development, operation, and maintenance of a software product, spanning the life of the system from the 
definition of its requirements to the termination of its use. 

Non-Deliverable Item[4]: Hardware or software product that is not required to be delivered under the 
contract but may be employed in the development of a software product. 

Off-The-Shelf Product[4]: Product that is already developed and available, usable either "as is" or with 
modification. 

Operational Profile[5]: The complete set of operations (major system logical  tasks) with their 
probabilities of occurrence. 

Operational Reliability[0]: (1) The set of dynamic test activities that focus on the prevention, detection, 
prediction, estimation, and/or mitigation of defects in the operational software code through dynamic unit, 
integration, acceptance, certification testing). (2) A measure of the remaining faults in software code at a 
specific reference point. (3) A measure of the estimated software reliability at a specific reference point. 

Process[4]: A set of interrelated activities, which transform inputs into outputs. NOTE-The term 
"activities" covers use of resources. 

Qualification[4]: The process of demonstrating whether an entity is capable of fulfilling specified 
requirements. 



Appendix A: Glossary of Terms  2/21/2003 3:53 PM 

 Page 7 of 9 

Quality Assurance[4]: All the planned and systematic activities implemented within the quality system, 
and demonstrated as needed, to provide adequate confidence that an entity will fulfill requirements for 
quality.  NOTES – 1) There are both internal and external purposes for quality assurance: a) Internal 
quality assurance: within an organization, quality assurance provides confidence to management; b) 
External quality assurance: in contractual situations, quality assurance provides confidence to the customer 
or others. 2) Some quality control and quality assurance actions are interrelated. 3) Unless requirements for 
quality fully reflect the needs of the user, quality assurance may not provide adequate confidence. 

Safety[8]:  Freedom from those conditions that can cause death, injury, occupational illness, damage to or 
loss of equipment or property, or damage to the environment. 

Security[0]: Features and procedures of a system that ensure its requirements are met for timely access to 
authenticated services and for protection from denial of authenticated services. 

Software Failure[2]: The inability of a software component to perform its required functions within 
specified performance requirements. 

Software Fault[1]: (1) A defect in the code that can be the cause of one or more failures. (2) An accidental 
condition that causes a functional unit to fail to perform its required function. Synonymous with bug. 

Software Fault[2]: An accidental condition that causes a software functional unit to fail to perform its 
required function. 

Software Fault Density[0]: The ratio of code faults to a unit of size, such as function points, modules, 
source lines of code at a specific reference point of time, such as at the start of system test or operational 
use.  

Software Maintainability[6]:  The ease with which a software system or component can be modified to 
correct faults, improve performance or other attributes, or adapt to a changed environment.  Also, a set of 
attributes that bear on the effort needed to make specified modifications. 

Software Maintenance[6]:  The process of modifying a software system or component after delivery to 
correct faults, improve performance or other attributes, or adapt to a changed environment.1 

Software Modification Support[6]:  The software support activities of change analysis, implementation, 
test and release of software products.  Changes may be termed corrective, perfective and adaptive, and may 
also embrace modifications that are designed to prevent foreseeable future software operating problems. 

Software Product[1]: The set of computer programs, procedures, and possibly associated documentation 
and data. 

Software Reliability[1]: (1) The probability that software will not cause the failure of a system for a 
specified time under specified conditions.  The probability is a function of the inputs to and use of the 
system, as well as a function of the existence of faults in the software.  The inputs to the system determine 
whether existing faults, if any, are encountered.  (2) The ability of a program to perform a required function 
under stated conditions for a stated period of time. 

Software Reliability[2]: (1) The probability of failure-free operation of a software program for a specified 
time under specified conditions. (2) A set of attributes that bear on the capability of software to maintain its 
level of performance under stated conditions for a stated period of time. 

Software Reliability Case[0]: The evidence presented throughout the project that software reliability 
requirements are consistent with system level requirements, are achievable, are understood by  the 
development organization, and that ambiguities have been resolved. 

Software Reliability Engineering[1]: The application of statistical techniques to data collected during 
system development and operation to specify, predict, estimate, and assess the reliability of software-based 
systems. 

                                                           
1 Software maintenance as defined above is essentially the same as software modification support, but is 
only part of the software support activities. 



Appendix A: Glossary of Terms  2/21/2003 3:53 PM 

 Page 8 of 9 

Software Reliability Estimation[1]: The application of statistical techniques to observed failure data 
collected during system testing and operation to assess the reliability of the software. 

Software Reliability Management[0]: The process of optimizing the reliability of software across the 
complete software life cycle by emphasizing human error prevention, fault detection and removal, use of 
measurements to improve reliability, and balancing the level of reliability consistent with project 
constraints such as resources, schedule, and performance. 

Software Reliability Model[1]: A mathematical expression that specifies the general form of the software 
failure process as a function of factors such as fault introduction, fault removal and the operational 
environment. 

Software Reliability Plan[0]: A description of the set of activities that will be performed throughout a 
project to ensure that requirements for software reliability have been defined through negotiations with the 
customer, analyses have been identified and conducted that ensure customer reliability requirements are 
met, and demonstrated evidence is provided that the customer reliability requirements have been achieved. 

Software Reliability Prediction[1]: A forecast of the reliability of the software based on parameters 
associated with the software product and its development environment. 

Software Reliability Program[0]: The management infrastructure and activities necessary to adequately 
integrate software reliability within a system reliability program and provide adequate evidence that the 
software reliability requirements have been determined, met, and demonstrated.  The two key components 
of the management infrastructure are the Software Reliability Plan and Software Reliability Case. 

Software Reliability Program [adapted from 3]:  The organizational processes and practices that are 
intended to:  (1) Ensure the delivery of a software product that has been adequately designed to achieve its 
performance specifications within its system application context; and (2) Ensure there is adequate evidence 
that the performance specification for the delivered software product has been achieved and continues to be 
met during operational use. 

Software Safety[0]: Features and procedures which ensure that a software product performs predictably 
under normal and abnormal conditions, thereby minimizing the likelihood of an unplanned event occurring, 
controlling and containing its consequences, and preventing accidental injury, death, destruction of 
property and/or damage to the environment, whether intentional or unintentional. 

Security[0]: Features and procedures of a system that ensure that its requirements for timely access to 
authenticated services and for protection from denial of authenticated services. 

Supplier[4]: An organization that enters into a contract with the customer for the supply of a system, 
software product or software service under the terms of the contract. NOTES- 1) The term "supplier" is 
synonymous with contractor, producer, seller, or vendor. 2) The customer may designate a part of its 
organization as supplier. 

Surety[0]: Attributes of and activities associated with achieving and assessing system safety, security, and 
reliability. 

System[1]: (1) A collection of people, machines and methods organized to accomplish a set of specific 
functions. (2) An integrated whole that is composed of diverse, interacting, specialized structures and 
subfunctions. (3) A group or subsystem united by some interaction or interdependence, performing many 
duties but functioning as a single unit. 

System Reliability[3]: The ability of a system to perform a stated function under stated conditions, for a 
stated period of time. 

System Safety[8]: The application of engineering and management principles, criteria, and techniques to 
achieve acceptable mishap risk, within the constraints of operational effectiveness and suitability, time, and 
cost, throughout all phases of the system life cycle. 

Time[1]: There are several categories of time that may be of interest for determining when failures occur 
and the impact of the frequency of the failures. These categories include: (1) Calendar Time: chronological 
time, including time during which a computer may not be running. (2) Clock Time: elapsed wall clock time 



Appendix A: Glossary of Terms  2/21/2003 3:53 PM 

 Page 9 of 9 

from the start of program execution to the end of program execution. (3) Execution Time: the amount of 
actual processor time used in executing a program. 

Validation[4]: Confirmation by examination and provision of objective evidence that the particular 
requirements for a specific intended use are fulfilled. NOTES – 1) In design and development, validation 
concerns the process of examining a product to determine conformity with user needs. 2) Validation is 
normally performed on the final product under defined operating conditions. It may be necessary in earlier 
stages. 3) "Validated" is used to designate the corresponding status. 4) Multiple validations may be carried 
out if there are different intended uses. 

Verification[4]: Confirmation by examination and provision of objective evidence that specified 
requirements have been fulfilled. NOTES – 1) In design and development, verification concerns the 
process of examining the result of a given activity to determine conformity with the stated requirement for 
that activity. 2) "Verified" is used to designate the corresponding status. 

 



Procurement of Software Dependant SystemsApril 3-4, 2003

Appendix B

References



Appendix B: References  3/18/2003 10:38 AM 

 Page 2 of 12 

 
 



Appendix B: References  3/18/2003 10:38 AM 

 Page 3 of 12 

B. References 
The indicated references and web links were the current known version as of the publication of this guide. There are 
numerous other publications relevant to software reliability.  

B.1 SAE PUBLICATIONS 
SAE publications can be obtained from: 

http://www.sae.org/ 
SAE World Headquarters  
400 Commonwealth Drive 
Warrendale, PA 15096-0001 USA 

[AIR5022] SAE Aerospace Information Report AIR5022, "Reliability and Safety Process Integration," 
Society of Automotive Engineers, July 1996. 

[ARP5580] SAE Aerospace Recommended Practice ARP 5580, "Recommended Failure Modes and Effects 
Analysis (Fmea) Practices for Non-Automobile Applications," Society of Automotive 
Engineers, July 2001. 

[J1739] SAE J Standard 1739, " Potential Failure Mode and Effects Analysis in Design (Design FMEA) 
and Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes 
(Process FMEA) and Effects Analysis for Machinery (Machinery FMEA)," Society of 
Automotive Engineers, August 2002. 

[JA1000] SAE JA Standard 1000, “Reliability Program Standard,” Society of Automotive Engineers, 
1998. 

[JA1000-1] SAE JA Guideline1000-1, “Reliability Program Implementation Guide,” Society of Automotive 
Engineers, 2000. 

[JA1002] SAE Surface Vehicle/Aerospace (JA) Standard 1002, “Software Reliability Program Standard,” 
Society of Automotive Engineers, 1998. 

[JA1003] SAE Surface Vehicle/Aerospace (JA) Guideline 1003 (Draft v0.93), “Software Reliability 
Program Standard Implementation Guide,” Society of Automotive Engineers, Draft, Publication 
Scheduled for November 2003. 

[JA1004] SAE Surface Vehicle/Aerospace (JA) Standard 1004, “Software Supportability Program 
Standard,” Society of Automotive Engineers, 1998. 

[JA1005] SAE Surface Vehicle/Aerospace (JA) Standard 1004, “Software Supportability Program 
Implementation Guidelines,” Society of Automotive Engineers, 2001. 

[JA1006] SAE Surface Vehicle/Aerospace (JA) Standard 1004, “Software Support Concept,” Society of 
Automotive Engineers, 1999. 

B.2 RELATED STANDARDS 
A world-wide search capability for reliability standards and standards developing organizations is available from: 

http://rac.iitri.org/rac/jsp/standards/standard.jsp 
IIT Research Institute / Reliability Analysis Center 
201 Mill Street, Rome, NY 13440-6916 

AIAA documents can be obtained from: 
http://www.aiaa.org/ 
American Institute of Aeronautics and Astronautics (AIAA) 
1801 Alexander Bell Drive, Suite 500  
Reston, VA 20191-4344  

British Standards Institute documents can be obtained from: 
http://www.bsi-global.com/index.xalter 
British Standards Institute (BSI) 
Linford Wood Milton Keyes 
MK14 6LE UK 

DoD documents can be obtained from: 
 http://dodssp.daps.mil/ 



Appendix B: References  3/18/2003 10:38 AM 

 Page 4 of 12 

Chief, Bibliographic Systems 
U.S. Government Printing Office 
Sales Management Division (SSMB) 
Washington, DC 20402 

IEC documents can be obtained from: 
http://www.techstreet.com/info/iec.html 
International Electrotechnical Commission 
1327 Jones Dr.  
Ann Arbor, MI, 48105 USA  

IEEE documents can be obtained from: 
http://www.computer.org/ 
IEEE Computer Society 
Publications Office 
10662 Los Vaqueros Circle 
P. O. Box 3014 
Los Alamitos, CA 90720-1264 USA 

ISO documents can be obtained from: 
http://www.ili-info.com/us/ 
Europe: ILI, Index House, Ascot, Berkshire, SL5 7EU, UK 
USA: ILI, 610 Winters Avenue, Paramus, NJ 07652, USA 
Germany: ILI, Dietlindenstraße 15, D-80802, Munich, Deutschland 
Italy: ILI, Via Guido D'Arezzo, 4 - 20145 Milano 
France: ILI, 25 rue de Ponthieu, 75008 Paris, France 

MISRA documents can be obtained from: 
http://www.misra.org.uk/index.htm 
Motor Industry Software Reliability Association (MISRA) 
Electrical Group, MIRA Ltd 
Watling Street 
Nuneaton, Warwickshire CV10 0TU UK 

NATO documents can be obtained from: 
http://www.nato.int/docu/standard.htm 
Directorate of Standardization 
Stan 2 
Kentigern House 
65 Brown Street 
GLASGOW G2 8EX 

NIST documents can be obtained from: 
http://csrc.nist.gov/publications/nistpubs/index.html 
National Institute of Standards and Technology 
100 Bureau Drive, Stop 3460 
Gaithersburg, MD 20899-3460 USA 

RTCA documents can be obtained from: 
http://www.rtca.org/ 
RTCA, Inc. 
1828 L Street, NW 
Suite 805 
Washington, DC 20036 USA 

Software Engineering Institute documents can be obtained from: 
http://www.sei.cmu.edu/ 
Software Engineering Institute 
Carnegie Mellon University 
Pittsburgh, PA 15213-3890 USA 

UK Ministry of Defence documents can be obtained from: 
http://www.dstan.mod.uk/home.htm 



Appendix B: References  3/18/2003 10:38 AM 

 Page 5 of 12 

UK Defence Standardization 
Room 1138 
Kentigern House 
65 Brown Street 
GLASGOW G2 8EX 
 

[AIAAR013] ANSI/AIAA R-013-1992, “AIAA Recommended Practice for Software Reliability,” February 
1993. 

[ARMP1] ARMP-1, Edition 3, "NATO Requirements for Reliability and Maintainability," June 2002. 
[ARMP4] ARMP-4, Edition 2, "Guidance on Writing NATO R&M Requirements Documents," October 

2001. 
[ARMP6] ARMP-6, Edition ?, "Monitoring and Managing In-Service R&M,"  
[ARMP7] NATO R&M Terminology in ARMPs 
[BS5760-P8] BS 5760, “Reliability of Systems, Equipment and Components,” Part 8: “Guide to Assessment 

of Reliability of Systems Containing Software,”  British Standards Institute, Draft for Approval 
for Publication, July 7, 1997. 

[CMMI2000] CMMI-SE/SW-Continuous, V1.02, CMMI for Systems Engineering/Software Engineering, 
Version 1.02, Continuous Representation, CMU/SEI-2000-TR-019, November 2000. 

 CMMI-SE/SW-Staged, V1.02, CMMI for Systems Engineering/Software Engineering, Version 
1.02, Staged Representation, CMU/SEI-2000-TR-018, November 2000. 

[DEFSTAN0042]  Defence Standard 00-42 (PART 2)/Issue 1, “Reliability And Maintainability Assurance Guides, 
Part 2:  Software,” United Kingdom Ministry of Defence, September 1997. 

[DEFSTAN0055]  Defence Standard 00-55 Issue 2, “Requirements for Safety Related Software in Defence 
Equipment," Part 1: Requirements, Part 2: Guidance," United Kingdom Ministry of Defence, 
August 1997. 

[DEFSTAN0060] Defence Standard 00-60, “Integrated Logistic Support”, Issue 2, “Logistic Support Analysis 
Application to Software Aspects of Systems”, Part 3, United Kingdom Ministry of Defence, 
March 1998. 

[DO178B] RCTA/DO-178B/ED-12B, “Software Considerations in Airborne Systems and Equipment,” 
Federal Aviation Administration software standard, RTCA Inc., December 1992. 

[DO248B] RCTA/DO-128, Final Report for Clarification of DO-178B, " Software Considerations in 
Airborne Systems and Equipment,” Prepared by SC-190, October 12, 2001. 

[IEC61508] ISO/IEC 61508, Edition 1.0: "Functional safety of electrical/electronic/programmable electronic 
safety-related systems," Multi-part standard, International Electrotechnical Commission,  1998. 

[IEC61713] ISO/IEC 61713, Edition 1.0: "Software dependability through the software life-cycle processes - 
Application guide," International Electrotechnical Commission,  June 30, 2000. 

[IEC61719] ISO/IEC 61719 (Draft): "Guide to measures to be used for the quantitative dependability 
assessment of software," ISO/IEC/TC56/SC7/WG10/N111,  Draft February 11, 2000. 

[IEEE12207-0] IEEE/EIA Std 12207.0-1996, “Software life cycle processes,” IEEE Computer Society, March 
1998. 

[IEEE12207-1] IEEE/EIA Std 12207.1-1997, “Software life cycle processes - Life cycle data,” IEEE Computer 
Society, April 1998. 

[IEEE12207-2] IEEE/EIA Std 12207.2-1997, “Software life cycle processes – Implementation considerations,” 
IEEE Computer Society, April 1998. 

[IEEE610] IEEE Std-610.12-1990, “IEEE Standard Glossary of Software Engineering Terminology,” IEEE 
Computer Society, September 1990. 

[IEEE982-1] IEEE Std-982.1-1988, "IEEE Standard Dictionary of Measures to Produce Reliable Software," 
IEEE Computer Society, June 1988. 



Appendix B: References  3/18/2003 10:38 AM 

 Page 6 of 12 

[IEEE982-2] IEEE Std-982.2-1988, "IEEE Guide for the use of  Standard Dictionary of Measures to Produce 
Reliable Software,” IEEE Computer Society, September 1988. 

[IEEE1228] IEEE Std-1228-1994,"IEEE Standard for Software Safety Plans," ,” IEEE Computer Society, 
March 1994. 

[ISO12207] ISO/IEC 12207, “Software Life Cycle Processes,” August 1, 1995. 

[MILSTD882D] MIL-STD-882D, " Department of Defense Standard Practice for System Safety," Department of 
Defense, February 10, 2000. 

[MISRA-VBS] ISO/TR 15497, "Development Guidelines for Vehicle Based Software, the Motor Industry," 
Motor Industry Software Reliability Association, ISBN 0 9524156 0 7, November 1994. 

[NATO96] NATO (Draft), “COTS Software Acquisition Guidelines and COTS Policy Issues – 1st 
Revision,” NATO Communications and Information Systems Agency, January 12, 1996. 

[NATO97] NATO (Draft), “NATO Guidelines for the Integration of Off-The-Shelf Software,” Working 
Paper AC/322(SC/5)WP/4, NATO C3 Board Information Systems Sub-Committee, June 30, 
1997. 

[NIST800-14] NIST 800-14, "Generally Accepted Principles and Practices for Securing Information 
Technology Systems," National Institute for Standards and Technology, 1996. 

[NIST800-26] NIST 800-26, "Security Self-Assessment Guide for Information Technology Systems," National 
Institute for Standards and Technology, 2001. 

[NIST800-27] NIST 800-27, "Engineering Principles for Information Technology Security (A Baseline for 
Achieving Security)," National Institute for Standards and Technology, 2001. 

[NUREG6421] NUREG/CR-6421, "A Proposed Acceptance Process for Commercial Off-the-Shelf (COTS) 
Software in Reactor Applications," Office of Nuclear Reactor Regulation, US Regulatory 
Commission, March 1996. 

[SPICE98] ISO/IEC TR 15504:1998: “Software Process Improvement Capability Determination (SPICE) - 
Software Process Assessment,” ISO/IEC/JTC1/SC7/WG10/N111,  ISO 1998. 

B.3 PUBLICATIONS 
[BASILI02] Basili, Vic, Boehm, Barry, and others, "What We Have Learned About Fighting Defects," 

Proceedings of the Eighth IEEE Symposium on Software Metrics (METRICS™02), IEEE 
Computer Society, 2002. http://www.CeBASE.org 

[DACS02] DACS CD, "Software Reliability Source Book," Data and Analysis Center for Software, Rome, 
NY, 2002. http://iac.dtic.mil/dacs/ 

[FALLA96] Falla, Mike, "Results and Achievements from the DTI/EPSRC R&D Programme in Safety 
Critical Systems," Compiled and Edited by Mike Falla, Motor Industry Software Reliability 
Association, November 1996. http://www.comp.lancs.ac.uk/computing/resources/scs/ 

[HELAN98] Helander, M., Shao, M., and Ohlsson, N. “Planning Models for Software Reliability and Cost,” 
IEEE Transactions on Software Engineering, Vol 24, Number 6, June 1998, pp 420-434. 

[HERRM99] Herrmann, D., Software Safety and Reliability: Techniques, Approaches, and Standards of Key 
Industrial Sectors, IEEE Computer Society, Los Alamitos, CA, 1999. 

[LEVESON95] Leveson, Nancy G., Safeware: System Safety and Computers, Addison Wesley Publishing 
Company, 1995.  

[LITTLEWD01] Littlewood, Bev, "Software Reliability and Dependability: A Roadmap," Centre for Software 
Reliability, City University, Northampton Square, London, UK, 2001. 

[LYU96] Lyu, Michael, Handbook of Software Reliability Engineering, McGraw Hill / IEEE CS Press, 
1996. 

[MUSA92] Musa, John D. “Operational Profiles in Software Reliability Engineering,”  IEEE Software, 
March 1993, pages 14-32. 

[MUSA99] Musa, John D., Software Reliability Engineering, McGraw-Hill Book Company, NY, 1999 



Appendix B: References  3/18/2003 10:38 AM 

 Page 7 of 12 

[NEUF02] Neufelder-Owner, A., N., “The Facts About Predicting Software Defects and Reliability,” 
Journal of the RAC, 2ndQ, 2002, pp 1-4. 

[PRIM97] PRIM-97, "Worldwide Reliability & Maintainability Standards," Reliability Analysis Center, 
IIT Research Institute / Reliability Analysis Center, Rome, NY, 1997. 

[ROME97] Lakey, Peter and Neufelder, Ann Marie, “System and Software Reliability Assurance 
Notebook,” Rome Laboratory Report, Griffiss Air Force Base, Rome NY, 1997. 
http://www.cs.colostate.edu/~cs530/rh/master01.pdf 

[SCHN97] Schneidewind, N., “Reliability Modeling for Safety-Critical Software,” IEEE Transactions on 
Reliability, Vol 46, Number 1, March 1997, pp 88-98. 

[SSSHDBK99] Joint Software System Safety Committee and EIA G-46 Committee, Software System Safety Handbook, Joint Services 
Computer Resources Management Group, U.S. Navy, U.S. Army, U.S. Air Force, December 1999. 

[XTALK03] CrossTalk, "Programming Languages," Journal of Defense Software Engineering, Vol. 16 No. 
2, February 2003. 

B.4 Interesting Web Sites 
[G11SW] http://www.sae.org/TECHCMTE/g11soft.htm  , G-11SW Committee 
[IEEECS] http://www.ieee.computer.org/   , IEEE Computer Society 
[ILS0060] http://www.dstan.mod.uk/dsmain.htm ,  UK MOD ILS  
[ISO] http://www.iso.ch/   ,  International Standards Organization (ISO) 
[LOGSA] http://www.logpars.army.mil/alc/logEngr.htm   , Acquisition Logistics Center part of the US 

Army Materiel Command Logistic Support Activity (LOGSA), Mil-PRF & MIL-HDBK 
documents 

[RAC] http://iitri.com/RAC/  ,  Reliability Analysis Center 
[SEI] http://www.sei.cmu.edu/   ,  Software Engineering Institute 
[SOLE] http://www.sole.org/   ,  International Society of Logistics (SOLE) 
[SPMN] http://www.spmn.com/index.html , Software Program Manager's Network 
[STSC] http://www.stsc.hill.af.mil/    ,  Software Technology Support Center 
[USC] http://sunset.usc.edu/COCOMOII/cocomo.html  , COCOMO Project 
[MUSA] http://members.aol.com/JohnDMusa/ , John Musa  
[CSR] http://www.csr.ncl.ac.uk:80/ , Centre for Software Reliability, Newcastle University, UK 
[TRIVEDI] http://www.ee.duke.edu/~kst/ , Dr Kishor Trivedi, Duke University 
[FAA-ACS] http://av-info.faa.gov/software/ , FAA Aircraft Certification Service Software 



Appendix B: References  3/18/2003 10:38 AM 

 Page 8 of 12 

References to User Experiences with Software Reliability Engineering 
 
This “page” is copyrighted by John D. Musa (2000).  However, you are 
encouraged to download, forward, copy, print, or distribute the page, 
provided you do so in its entirety (including this notice) and do not sell 
or otherwise exploit it for commercial purposes. 
 
JOHN D. MUSA 
Website http://members.aol.com/JohnDMusa/ 
Updated August 25, 2000 
 
If you have written or know of a published article not on this list, please 
send it to me in the citation format shown.  Please send only references to 
articles written about the actual use by project personnel of  SRE on real 
projects (data collection and analysis is not sufficient).  To qualify as 
SRE, the project  must have developed and used operational profiles, set 
and applied failure intensity objectives, or measured failure intensity and 
used it in managing the project.  The reason for imposing these 
requirements is to limit the list to articles that new users can learn from 
and apply. 
 
Send E-mail to: mailto:j.musa@ieee.org 
 
---------------------------------------------------- 
 
Alam, M., W. Chen, W. Ehrlich, M. Engel, D. Kropfl, P. Verma.  1997. 
Assessing software reliability performance under highly critical but 
infrequent event occurrences.  Proceedings 8th  International Symposium on 
Software Reliability Engineering, Albuquerque, NM, November 1997, pp. 
294-307. 
 
Beck, A.  1998.  "ESSI process improvement experiment 23843 - USST usage 
specification and statistical testing." Proceedings 8th International 
Symposium on Software Reliability Engineering:  Case Studies, Albuquerque, 
NM, November 1997, pp. 95-100. 
 
Bennett, J., Denoncourt, M., and Healy, J. D.  1992.  "Software Reliability 
Prediction for Telecommunication Systems," Proc. 2nd Bellcore/Purdue 
Symposium on Issues in Software Reliability Estimation, Oct. 1992, pp. 
85-102. 
 
Bentz, R. W. and C. D. Smith. 1996.  Experience report for the software 
reliability program on a military system acquisition and development. 
Proceedings 7th International Symposium on Software Reliability Engineering 
- Industrial Track, White Plains NY, October 30-November 2, 1996, pp. 
59-65. 
 
Bergen, L. A.  1989.  "A Practical Application of Software Reliability to a 
Large Scale Switching System," IEEE International Workshop:  Measurement of 
Quality During the Life Cycle, Val David, Quebec, Canada, April 25-27, 
1989. 
 
Carman, D. W., Dolinsky, A. A., Lyu, M. R., and Yu, J. S.  1995.  "Software 
Reliability Engineering Study of a Large-Scale Telecommunications Software 
System," Proc. 1995 International Symposium on Software Reliability 
Engineering, Toulouse, France, Oct. 1995, pp. 350-. 
 



Appendix B: References  3/18/2003 10:38 AM 

 Page 9 of 12 

Carnes, P. 1997.  "Software reliability in weapon systems."  Proceedings 
8th International Symposium on Software Reliability Engineering:  Case 
Studies, Albuquerque, NM, November 1997, pp. 95-100. 
 
Carnes, P. 1998.  "Software reliability in weapon systems."  Proceedings 
9th International Symposium on Software Reliability Engineering: 
Industrial Practices, Paderborn, Germany, November 1998, pp.272-279. 
 
Christenson, D. A.  1988.  "Using Software Reliability Models to Predict 
Field Failure Rates in Electronic Switching Systems," Proc. 4th Annual 
National Joint Conference on Software Quality and Productivity, Washington, 
DC. 
 
Chruscielski, K. and J. Tian.  1997.  An operational profile for the 
cartridge support software.  Proceedings 8th International Symposium on 
Software Reliability Engineering, Albuquerque, NM, November 1997, pp. 
203-212. 
 
Cramp, R., Vouk, M. A., and Jones, W.  1992.  "On Operational Availability 
of a Large Software-Based Telecommunications System," Proc. 3rd 
International Symposium on Software Reliability Engineering, Research 
Triangle Park, NC, Oct. 7-10, 1992, pp. 358-366. 
 
Cusick, J. and M. Fine.  1997.  Guiding reengineering with the operational 
profile. Proceedings 8th International Symposium on Software Reliability 
Engineering:  Case Studies, Albuquerque, NM, November 1997, pp. 15-25. 
 
Derriennic, H. and G. Le Gall.  1995.  Use of failure-intensity models in 
the software-validation phase for telecommunications.  IEEE Transactions on 
Reliability 44(4):658-665. 
 
Dixit, P., M. A. Vouk, D. L. Bitzer, and C. Alix.  1996.  Reliability and 
availability of a wide area network-based education system. Proceedings 7th 
International Symposium on Software Reliability Engineering, White Plains 
NY, October 30-November 2, 1996, pp. 213-218. 
 
Dixit, P., M. A. Vouk, and D. L. Bitzer.  1997.  Reliability behavior of a 
large network based education system. Proceedings 8th International 
Symposium on Software Reliability Engineering:  Case Studies, Albuquerque, 
NM, November 1997, pp. 43-56. 
 
Donnelly, M., Everett, B., Musa, J., and Wilson, G.  1996.  "Best Current 
Practice of SRE," Lyu, M. R. (ed.), Handbook of Software Reliability 
Engineering, McGraw-Hill, 1996, pp. 219-254. 
 
Drake, H. D. and D. E. Wolting.  1987.  Reliability theory applied to 
software testing.  Hewlett-Packard Journal 38(4):35-39. 
 
Ehrlich, W. K., R. Chan, W. J. Donnelly, H. H. Park, M. B. Saltzman, and P 
Verma.  1996.  Validating software architectures for high reliability. 
Proceedings 7th International Symposium on Software Reliability 
Engineering, White Plains NY, October 30-November 2, 1996, pp. 196-206. 
 
Ehrlich, W. K., Lee, K., and Molisani, R. H.  1990.  "Applying Reliability 
Measurements:  A Case Study," IEEE Software, March 1990. 
 
Ehrlich, W. K., Prasanna, B., Stampfel, J. P., and Wu, J. R.  1993. 



Appendix B: References  3/18/2003 10:38 AM 

 Page 10 of 12 

"Determining the Cost of a Stop-Test Decision," IEEE Software, March 1993, 
pp. 33-42. 
 
Ehrlich, W. K., Stampfel, J. P., and Wu, J. R.  1990.  "Application of 
Software Reliability Modeling to Product Quality and Test Process," Proc. 
12th International Conference on Software Engineering, Nice, France, March 
1990. 
 
Elentukh, A.  1994.  "System Reliability Policy at Motorola Codex,"  Proc. 
5th International Symposium on Software Reliability Engineering,  Monterey, 
CA, Nov. 6-9, 1994, pp. 289-293. 
 
Everett, W. W. and J. M. Gobat.  1996.  DQS's experience with SRE. 
Proceedings 7th International Symposium on Software Reliability 
Engineering, White Plains NY, October 30-November 2, 1996, pp. 219-224. 
 
Fuoco, G., Irving, N., Juhlin B., Kropfl, D., and Musa, J.  1996.  "The 
Operational Profile," Lyu, M. R. (ed.), Handbook of Software Reliability 
Engineering, McGraw-Hill, 1996, pp. 167-216 (includes three project 
applications). 
 
Hamilton, P. A. and Musa, J. D.  1978.  "Measuring Reliability of 
Computation Center Software," Proc. 3rd International Conference on 
Software Engineering, pp. 29-36. 
 
Hill, S. W. and F. S. Kmetz.  1997.  Application of software reliability 
engineered testing (SRET) to project accounting application (PAA). 
Proceedings 8th International Symposium on Software Reliability 
Engineering:  Case Studies, Albuquerque, NM, November 1997, pp. 59-68. 
 
Hudepohl, J. P.  Measurement of software service quality for large 
telecommunications systems. IEEE Journal on Selected Areas in 
Communications 8(2):210-218. 
 
Hudepohl, J. P., W. Snipes, T. Hollack, and W. Jones.  A methodology to 
improve switching system software service quality and reliability. 
Proceedings IEEE Global Communications Conference, pp. 1671-1678. 
 
Iannino, A and Musa, J. D.  1991.  "Software Reliability Engineering at 
AT&T," Apostolakis, G. (ed.) Probability Safety Assessment and Management - 
Vol. 1, Elsevier, New York. 
 
Jenson, B. D.  1995.  "A Software Reliability Engineering Success Story: 
AT&T's Definity( PBX," Proc. 1995 International Symposium on Software 
Reliability Engineering, Toulouse, France, Oct. 1995, pp. 338-343. 
 
Jones, W. D.  1991.  "Reliability Models for Very Large Software Systems in 
Industry," Proc. 1991 International Symposium on Software Reliability 
Engineering, Austin, TX, May 17-18, 1991, pp. 35-42. 
 
Jones,W.D. 1998. "A Brief History of SRE in PCN,"  Proc. 9th Annual SRE 
Workshop 7/14-15/98, Ottawa, Ontario, Canada. 
 
Juhlin, B. D.  1992.  "Implementing Operational Profiles to Measure System 
Reliability," Proc. 3rd International Symposium on Software Reliability 
Engineering, Research Triangle Park, NC, Oct. 7-10, 1992, pp. 286-295. 
 



Appendix B: References  3/18/2003 10:38 AM 

 Page 11 of 12 

Juhlin, B. D.  1992.  "Applying Software Reliability Engineering to 
International PBX Testing," Proc. 9th International Conference on Testing 
Computer Software, Washington, DC, June 16-18, 1992, pp. 165-176. 
 
Juhlin, B. D.  1993.  "Software Reliability Engineering in the System Test 
Process," Proc. 10th International Conference on Testing Computer Software, 
Washington, DC, June 14-17, 1993, pp. 97-115. 
 
Kaâniche, M. and K. Kanoun.  1996.  Reliability of a commercial 
telecommunications system. Proceedings 7th International Symposium on 
Software Reliability Engineering, White Plains NY, October 30-November 2, 
1996, pp. 207-212. 
 
Kanoun, K and Sabourin, T.  1987.  "Software Dependability of a Telephone 
Switching System," Proc. 17th IEEE International Symposium on 
Fault-Tolerant Computing, Pittsburgh, June 1987, pp. 236-241. 
 
Kanoun, K., Bastos Martini, M., and Moreira de Souza, J.  1991.  "A Method 
for Software Reliability Analysis and Prediction-Application to the 
TROPICO-R Switching System," IEEE Trans. Software Engineering, April 1991, 
pp. 334-344. 
 
Keller, T. and N. Schneidewind.  1997.  Successful application of software 
reliability engineering for the NASA space shuttle. Proceedings 8th 
International Symposium on Software Reliability Engineering:  Case Studies, 
Albuquerque, NM, November 1997, pp. 71-82. 
 
Kropfl, D. and Ehrlich, W.  1995.  "Telecommunications Network Operating 
Systems:  Experiences in Software Reliability Engineering," Proc. 1995 
International Symposium on Software Reliability Engineering, Toulouse, 
France, Oct. 1995, pp. 344-349. 
 
Kruger, G. A.  1988.  Project management using software reliability growth 
models.  Hewlett-Packard Journal 39(6):30-35. 
 
Kruger, G. A.  1989.  Validation and further application of software 
reliability growth models.  Hewlett-Packard Journal 40(4):75-79. 
 
Lakey, Peter B.  1998.  "How  does any software organization proceed in 
incorporating SRE?" (Crusader self-propelled howitzer project)  Proc. 9th 
Annual SRE Workshop 7/14-15/98, Ottawa, Ontario, Canada. 
 
Lee, I. and R. K. Iyer.  1995.  Software dependability in the Tandem 
GUARDIAN system.  IEEE Transactions on Software Engineering 21(5):455-467. 
 
Levendel, Y.  1989.  "Defects and Reliability Analysis of Large Software 
Systems:  Field Experience," Proc. 19th IEEE International Symposium on 
Fault-Tolerant Computing, Chicago, June 1989, pp. 238-244. 
 
Levendel, Y.  1990.  "Reliability Analysis of Large Software Systems: 
Defect Data Modeling,"  IEEE Trans. Software Engineering, vol. SE-16, no. 
2, February 1990, pp. 141-152. 
 
Levendel, Y.  1995.  "The Cost Effectiveness of Telecommunication Service 
Dependability," Lyu, M. R. (ed.), Software Fault Tolerance, Wiley and Sons, 
pp. 279-314. 
 



Appendix B: References  3/18/2003 10:38 AM 

 Page 12 of 12 

Martini, M. R., Kanoun, K. and de Souza, J. M.  1990.  "Software 
Reliability Evaluation of the TROPICO-R Switching System, IEEE Trans. 
Reliability, vol. 33, no. 3, pp. 369-379. 
 
Mendiratta, Veena B. 1998.  "Reliability Analysis of Clustered 
Architectures," Proc. 9th Annual SRE Workshop 7/14-15/98, Ottawa, Ontario, 
Canada. 
 
Musa, J. D., G. Fuoco, N. Irving, B. Juhlin, and D. Kropfl.  1996.  The 
operational profile.  In Handbook of Software Reliability Engineering, ed. 
M. R. Lyu, McGraw-Hill, 1996, pp. 167-216 (includes three project 
applications). 
 
Nikora, A. P. and Lyu, M. R.  1996.  "Software Reliability Measurement 
Experiences," Lyu, M. R. (ed.), Handbook of Software Reliability 
Engineering, McGraw-Hill, pp. 255-301. 
 
Oshana, R. and F. P. Coyle.  1997.  Improving a system regression test with 
usage models developed using field collected data.  Proceedings Software 
Quality Week 1997. 
 
Pemler, S. and Stahl, N.  1994.  "An Automated Environment for Software 
Testing and Reliability Estimation," Proc. 5th International Symposium on 
Software Reliability Engineering, Monterey, CA, Nov. 6-9, 1994, pp. 
312-317. 
 
Rapp, B.  1990.  "Application of Software Reliability Models in Medical 
Imaging Systems,"  Proc. 1990 International Symposium on Software 
Reliability Engineering, Washington, DC, April 1990. 
 
Sandfoss, R. V. and S. A. Meyer.  1997.  Input requirements needed to 
produce an operational profile for a new telecommunications system. 
Proceedings 8th International Symposium on Software Reliability 
Engineering:  Case Studies, Albuquerque, NM, November 1997, pp. 29-39. 
 
Schneidewind, N. F. and Keller, T. W.  1992.  "Application of Reliability 
Models to the Space Shuttle," IEEE Software, July 1992, pp. 28-33. 
 
Teresinski, J. A. 1996.  Software reliability:  getting started. 
Proceedings 7th International Symposium on Software Reliability Engineering 
- Industrial Track, White Plains NY, October 30-November 2, 1996, pp. 
39-47. 
 
Tian, J. , P. Lu, and J. Palma.  1995.  Test-execution based reliability 
measurement and modeling for large commercial software.  IEEE Transactions 
on Software Engineering 21(5):405-414. 
 
Tierney, J. 1996.  Putting aspects of software reliability engineering to 
use. Proceedings 7th International Symposium on Software Reliability 
Engineering - Industrial Track, White Plains NY, October 30-November 2, 
1996, pp. 89-92. 
 
Weinberg, T. 1996.  SoothSayer:  a tool for measuring the reliability of 
Windows NT services.  Proceedings 7th International Symposium on Software 
Reliability Engineering - Industrial Track, White Plains, NY, October 
30-Nivember 2, 1996, pp. 49-56. 



Procurement of Software Dependant SystemsApril 3-4, 2003

Appendix C

Example Software Failures



1. Therac 25 Accidents (6), June 1985 - January 1987
Leveson, Nancy, "An Investigation of the Therac-25 Accidents," IEEE Computer, July 1993, pp 18-41.

Between June 1985 and January 1987, six known accidents involved massive overdoses by the Therac-25
(radiation treatment equipment), with resultant deaths and serious injuries.  They have been described as
the worst series of radiation accidents in the 35-year history of medical accelerators.

The mistakes that were made are not unique to this manufacturer but are, unfortunately, fairly common in
other safety-critical systems.

"A significant amount of software for life-critical systems comes from small firms, especially in the
medical device industry; firms that fit the profile of those resistant to or uninformed of the principles of
either system safety or software engineering."

Most accidents are SYSTEM accidents; stem from complex interactions between various components and
activities.  It would be a serious mistake to attribute a single cause to an accident.

However, the facts in these cases are that software was a major contributor to each of the six accidents.
Major changes in procedures, hardware interlocks, and software code were requested by the FDA and were
made.



1. Airbus A320-211, September 14, 1993
Summary on pg 130 in Herrmann, Debra, Software Reliability and Safety, Computer Society Press, IEEE
Inc, Piscataway, NJ, 1999.

Airbus A320-211 crashed in Warsaw, September 14, 1993 killing two people.  A variety of factors
contributed to the hazardous consequences, including a software requirements specification defect.
Weather conditions caused the aircraft to hydroplane which caused a delay in the air-to-ground transition
trigger from the computer because both wheels did not reach the "required speed and exhibit the required
landing gear compression" per software specification.



1. Ariane 501 Disaster, June 4, 1996
From the official report as contained at: http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html

! 10 years, $7 billion, Ariane  giant rocket for launching 3-ton satellites - commercial space business
for Europe

! 39 seconds after launch, altitude of 2 1/2 miles, self-destruct mechanism destroyed Ariane 5 & its
payload of 4 scientific satellite; aerodynamic forces were ripping the boosters from the rocket.

! Spacecraft swerved off course under pressure three powerful nozzles in its boosters and main engine;
rocket made unneeded abrupt course correction, compensating for a wrong turn not taken.

! Steering controlled on-board computer, thought the rocket needed a course change because of
numbers from the inertial guidance system. Numbers were actually diagnostic error message. The
guidance system had shut down (@36.7 sec) when the guidance system's computer  tried to convert
one piece of data, the sideways velocity of the rocket, from a 64-bit format to a 16-bit format.  The
number was too big, an  overflow error resulted, the guidance system shut down and passed control
to an identical, redundant unit, there to provide backup in case of just such a failure.  The second unit
had failed in the identical manner a few milliseconds before. It was running the same software.

! Decision was made that this particular velocity figure would never be large enough to cause trouble.
Unluckily, Ariane 5 was a faster rocket than Ariane 4.  The calculation containing the bug served no
purpose once the rocket was in the air - only function was to align the system before launch; should
have been turned off but engineers chose long ago, in an earlier version of the Ariane, to leave this
function running for the first 40 secs of flight -- to make it easy to restart the system in the event of a
brief hold in the countdown.

! CAUSE OF THE FAILURE
The failure of the Ariane 501 was caused by the complete loss of guidance and altitude information 37
seconds after start of the main engine ignition sequence (30 seconds after lift- off). This loss of information
was due to specification and design errors in the software of the inertial reference system.  The extensive
reviews and tests carried out during the Ariane 5 Development Programme did not include adequate
analysis and testing of the inertial reference system or of the complete flight control system, which could
have detected the potential failure.



1. Friendly Fire Deaths, March 2002
Jamie McCarthy <jamie@mccarthy.vg>
Tue, 26 Mar 2002 10:47:52 -0500

In one of the more horrifying incidents I've read about, U.S. soldiers and allies were killed in December
2001 because of a stunningly poor design of a GPS receiver, plus "human error."

  http://www.washingtonpost.com/wp-dyn/articles/A8853-2002Mar23.html

A U.S. Special Forces air controller was calling in GPS positioning from some sort of battery-powered
device.  He "had used the GPS receiver to calculate the latitude and longitude of the Taliban position in
minutes and seconds for an airstrike by a Navy F/A-18."

According to the *Post* story, the bomber crew "required" a "second calculation in 'degree decimals'" --
why the crew did not have equipment to perform the minutes-seconds conversion themselves is not
explained.

The air controller had recorded the correct value in the GPS receiver when the battery died.  Upon
replacing the battery, he called in the degree-decimal position the unit was showing -- without realizing that
the unit is set up to reset to its *own* position when the battery is replaced.

The 2,000-pound bomb landed on his position, killing three Special Forces soldiers and injuring 20 others.

If the information in this story is accurate, the RISKS involve replacing memory settings with an
apparently-valid default value instead of blinking 0 or some other obviously-wrong display; not having a
backup battery to hold
values in memory during battery replacement; not equipping users to translate one coordinate system to
another (reminiscent of the Mars Climate Orbiter slamming into the planet when ground crews confused
English with metric); and using a device with such flaws in a combat situation.



1. Air-traffic control software reliability, May 2002
"Peter B. Ladkin" <ladkin@rvs.uni-bielefeld.de>
Wed, 15 May 2002 10:03:39 +0200

An article in *Aviation Week and Space Technology*, "Why Controllers Are Skeptics Regarding New
Technology", by Bruce Nordwall, 6 May 2002, pp.50-51, tells the following tale recounted recently at an
air-traffic controllers' conference by Philippe Domogola, supervisor at the Maastricht Upper Area Control
Center.

"Some years ago," a new European ATC center installed software specified as "99.99% reliable", which
apparently meant 99.99% availability in each calendar year, or a maximum of roughly 52 minutes down-
time per year.  The software "failed" a couple of months after installation, and suffered 20 hours down-
time. "The manufacturer's conclusion was: human error that will not happen again" (come to think of it, any
specific software bug can be put down to "human error that will not happen again").

Someone had forgotten about leap years. It failed at 23:59 on February 28.

Some controllers suggested that since the software was "99.99% reliable" and it had already been
unavailable for 20 hours, it follows there were going to be no more failures for the next 25 years.

They were right. It does follow.

Peter B. Ladkin, University of Bielefeld, Germany
http://www.rvs.uni-bielefeld.de



1. Impact of inadequate software testing on US economy, June
2002

Rick Kuhn <kuhn@nist.gov>
Wed, 05 Jun 2002 14:53:35 -0400

http://www.nist.gov/director/prog-ofc/report02-3.pdf

NIST has released a new study conducted by the Research Triangle Institute that should be of interest to
readers: "The Economic Impacts of Inadequate Infrastructure for Software Testing".  From the summary:

NIST engaged the Research Triangle Institute (RTI) to assess the cost to the U.S. economy of inadequate
software testing infrastructure.  Inadequate testing is defined as failure to identify and remove software
bugs in real time. Over half of software bugs are currently not found until downstream in the development
process leading to significant economic costs. RTI identified a set of quality attributes and used them to
construct metrics for estimating the cost of an inadequate testing infrastructure. Two in depth case studies
were conducted. In the manufacturing sector, transportation equipment industries were analyzed. Data were
collected from software developers (CAD/CAM/CAE and product data management vendors) and from
users (primarily automotive and aerospace companies). In the service sector, financial services were
analyzed with data collected again from
software developers (routers and switches, financial electronic data interchange, and clearinghouse) and
from users (banks and credit unions).  ...the annual cost to these two major industry groups from inadequate
software infrastructure is estimated to be $5.85 billion. Similarities across industries with respect to
software development and use and, in particular, software testing labor costs allowed a projection of the
cost to the entire U.S. economy. Using the per-employee impacts for the two case studies, an extrapolation
to other manufacturing and service industries yields an approximate estimate of $59.5 billion as the annual
cost to the nation of inadequate software testing infrastructure.



1. Army Training Accident, June 2002
Steve Bellovin <smb@research.att.com>
Thu, 13 Jun 2002 09:38:10 -0400

According to a U.S. Army report, a software problem contributed to the deaths of two soldiers in a training
accident at Fort Drum.  They were firing artillery shells, and were relying on the output of the Advanced
Field Artillery Tactical Data System.  But if you forget to enter the target's altitude, the system assumes a
default of 0.  (A Web site I found indicates that (part of) Ft. Drum is at 679 feet above sea level.)  The
report goes on to warn that soldiers should not depend exclusively on this one system, and should use other
computers or manual calculations.

Other factors in the incident include the state of training of some of the personnel doing the firing.  [Source:
AP]



1. Questions About New Air-Traffic Computer System, June
2002

Ian Macky <ian.macky@oracle.com>
Wed, 5 Jun 2002 14:10:15 -0700 (PDT)

There are some highly scary quotes in this article regarding the new STARS (Standard Terminal
Automation Replacement System) which is supposed to replace the hodge-podge of old air-traffic control
systems:

  http://www.cnn.com/2002/TRAVEL/NEWS/06/05/faa.airtraffic.ap/index.html

Players are the FAA Union (representing the flight controllers), the FAA technicians who are trying to roll
out the  new system, the equipment builder, Raytheon Co., and the DOT (Department of Transportation).
[...]

"DOT Inspector General Kenneth Mead ... said there were 71 specific software problems that could prevent
the system from operating as designed, or could threaten safety or security. "  "Mead said controllers in El
Paso had to track airplanes manually because the computer system didn't properly display the flights."

Union vice president Tom Brantley: "They don't believe it's operationally suitable," Brantley said.  "It's
failing.  It has a lot of errors.  They can't verify that it works because it fails a lot of the tests."

FAA spokesman Scott Brenner said the only problems are the normal bugs (!) that accompany any new
technology.  [Ship it!]  "When the [FAA] technicians refused to certify the system in Syracuse, New York,
the FAA invoked a never-before-used [emergency] clause in its contract with its employees and ordered
them to approve the equipment.
The Syracuse system was turned on Monday night."  Brantley: "The emergency clause was never intended
for something like this. That was intended if there were an actual emergency."

Blanche Necessary (!), a spokeswoman for the equipment builder, Raytheon Co., said the system was
working well in El Paso and Syracuse.  etc., etc.

The RISKS are painfully familiar.  Feel safer flying?



1. Software "glitch" Changes the Colour of the Universe, March
2002

Pete Mellor <pm@csr.city.ac.uk>
Wed, 13 Mar 2002 00:35:43 +0000 (GMT)

As reported on the "Broadcasting House" programme on BBC Radio 4, Sunday 10th March:-

Scientists at John Hopkins University have spent several years calculating the weighted average of the
electromagnetic frequency of emissions from all galaxies in the observable universe.  They concluded their
research by announcing last month that, on average, the universe is turquoise.

Last week, they announced that, due to a software "glitch", they had miscalculated, and that the universe is,
in fact, beige.

Broadcasting House are threatening legal action, claiming that they have just had their studio painted
turquoise in order to be in harmony with the rest of the universe.

Peter Mellor, Centre for Software Reliability, City University,
Northampton Square, London EC1V 0HB UK  NEW Tel.: +44 (0)20 7040 8422



 From the IT department at Franciscan

 Computer Zen

In Japan, they have replaced the impersonal and unhelpful Microsoft error  messages with Haiku poetry
messages.

Haiku poetry has strict construction rules. Each poem has only three lines,  17 syllables: five syllables in
the first line, seven in the second, five in the third.

Haikus are used to communicate a timeless message often achieving a wistful,  yearning and powerful
insight through extreme brevity....the essence of Zen!

Here are some examples:



-------------------------------------------
Your file was so big.
It might be very useful.
But now it is gone.
-------------------------------------------
The Web site you seek
Cannot be located, but
Countless more exist.
--------------------------------------------
Chaos reigns within.
Reflect, repent, and reboot.
Order shall return.
-----------------------------------------------
Program aborting:
Close all that you have worked on.
You ask far too much.
------------------------------------------------
Windows NT crashed.
I am the Blue Screen of Death.
No one hears your screams.
-------------------------------------------------
Yesterday it worked.
Today it is not working.
Windows is like that.
---------------------------------------------------
First snow, then silence.
This thousand-dollar screen dies
So beautifully.
---------------------------------------------------

--------------------------------------------------
With searching comes loss
And the presence of absence:
"My Novel" not found.
--------------------------------------------------
Stay the patient course.
Of little worth is your ire.
The network is down.
---------------------------------------------------
A crash reduces
Your expensive computer
To a simple stone.
---------------------------------------------------
Three things are certain:
Death, taxes and lost data.
Guess which has occurred.
---------------------------------------------------
You step in the stream,
But the water has moved on.
This page is not here.
---------------------------------------------------
Having been erased,
The document you're seeking
Must now be retyped.
---------------------------------------------------
Serious error.
All shortcuts have disappeared.
Screen. Mind. Both are blank.
---------------------------------------------------



Procurement of Software Dependant SystemsApril 3-4, 2003

Appendix D

Case Study Materials



 

Draft from JA1003 as of 3/18/2003 10:45 AM Page 1 of 4 

Software Reliability Plan Thematic Outline 
 

1. MANAGING THE SOFTWARE RELIABILITY PROGRAM ACTIVITIES 
1.1 Define purpose, scope of plan and program, reliability goals and objectives 
1.2 Nomenclature and project references 
1.3 Program management functions: responsibility, authority, interaction between 

system and software reliability programs; customer interaction/involvement; risk 
management 

1.4 Resources needed, including personnel and equipment 
1.5 Schedule 
1.6 Training 
1.7 Subcontract Management 
1.8 Plan approval and maintenance 

2. PERFORMING SOFTWARE RELIABILITY PROGRAM ACTIVITIES 
2.1 Determine Customer Requirements 

2.1.1 Establish supplier-customer dialogue 
2.1.2 Identify operational conditions of use 
2.1.3 Define in-service conditions of support 
2.1.4 Establish metrics: goals, assumptions and claims, and expected evidence 
2.1.5 Develop plan 
2.1.6 Document pre-development case evidence 

2.2 Meet Customer Requirements 
2.2.1 Define lifecycle model, methodology, interaction with system engineering 
2.2.2 Identify specific static and dynamic analyses to be performed throughout 

lifecycle, and associated progress reporting approach 
2.2.3 Perform design, implementation, test activities 
2.2.4 Document development case evidence 

2.3 Demonstrate Customer Requirements 
2.3.1 Qualify the product and process 
2.3.2 Establish process controls 
2.2.3 Transition to operational environment 
2.2.4 Training end-users, operations and support staff 
2.3.5 Pursue continuous improvement 
2.3.6 Establish data collection and reporting 
2.3.7 Document post-development case evidence 

3. DOCUMENTING SOFTWARE RELIABILITY PROGRAM ACTIVITIES 
3.1 Lifecycle practices 
3.2 Software reliability case file of evidence  



 

Draft from JA1003 as of 3/18/2003 10:45 AM Page 2 of 4 

Software Reliability Case Thematic Outline 
 
1. SOFTWARE RELIABILITY GOALS AND OBJECTIVES 

1.1 What they are, overall and for partitions 
1.2 How were they derived, apportioned to software and partitions 
1.3 Relation to system reliability goals 
1.4 Regulatory and/or contractual requirements 

2. ASSUMPTIONS AND CLAIMS 
2.1 Assumptions: agreed upon constraints and basis for claims 
2.2 Claims: agreed upon validation and certification criteria 

3. EVIDENCE 
 For each of the phases: Pre-development/Development/Post-development/In-Service 

3.1 Process activities that demonstrate achievement of software reliability goals and 
objectives 

3.2 Product characteristics that demonstrate achievement of software reliability goals 
and objectives 

3.3 Qualifications of people and resources that demonstrate achievement of software 
reliability goals and objectives 

4. CONCLUSION/RECOMMENDATION 
4.1 Summary of reliability goals, claims, and actual evidence provided 
4.2 Recommendations related to warranty, certification, qualification 

5. CERTIFICATION RECORDS 
5.1 Record of all acceptance warranty, certification, qualification activities and results 

 
 
 



 

Draft from JA1003 as of 3/18/2003 10:45 AM Page 3 of 4 

Software Reliability Case Evidence Guidelines 
 
1. SOFTWARE RELIABILITY GOALS AND OBJECTIVES 

The information in the software reliability case file must correlate with the specified 
software reliability goals.  Hence, the software reliability goals and objectives should be 
stated first, for the system and individual partitions, as appropriate.  The process by 
which the reliability goals were derived and apportioned to software should be described.  
The relationship between the system and software reliability goals should be explained.  
Any regulatory and/or contractual reliability requirements should be highlighted.  In 
addition, the agreed upon validation and certification criteria should be noted. 

 
2. ASSUMPTIONS AND CLAIMS 

All assumptions, such as citing existing systems or research,  and claims made relative to 
achievement and assessment of the software reliability goals and objectives should be 
clearly stated and justified. 

 
3. EVIDENCE 

Three categories of evidence should be supplied in the software reliability case file:  
process activities, product characteristics, and qualifications of people and resources that 
demonstrate achievement of software reliability goals.  As an introduction to the 
evidence, this information can be summarized as shown in the Table below.   

 System:__________________________ 

 Intended Use/Environment:___________________ 

 Phase/Date:__________________________ 
 Table.  Summary of Software Reliability Case Evidence 

    

Reliability Control 
Measure 
 

Product Evidence/ 
Safeguards  

Process Evidence/ 
Safeguards 

Resource Evidence/ 
Safeguards 

Fault 
Elimination 

- 
- 
- 
- 
- 

- 
- 
- 
 

- 
- 
- 

Failure 
containment 

- 
- 
- 
- 
- 

- 
- 
- 

- 
- 
- 

Failure rate 
estimation 

- 
- 
- 
- 
- 

- 
- 
- 

- 
- 
- 



 

Draft from JA1003 as of 3/18/2003 10:45 AM Page 4 of 4 

3.1 Process activities that demonstrate achievement of software reliability goals and objectives 

A description of the selected lifecycle model and development methodology should be 
provided, including an explanation of how this model and methodology contribute(d) to 
the attainment and assessment of reliability goals throughout the lifecycle phases.  
Specific lifecycle activities that were used to assess software reliability should be called 
out, such as performing iterative risk analyses or using of static analysis techniques.  An 
assessment should be made of the: 

• software reliability design analysis, 
• software reliability code analysis, 
• software reliability change analysis, and  
• effectiveness of validation and verification activities.   

Suspected or confirmed reliability problems should be documented, along with the 
current status of their resolution.  Results from analyzing and interpreting process metrics 
should also be discussed. 

3.2 Product characteristics that demonstrate achievement of software reliability goals and 
objectives 

A description of the design features which contribute to enhanced reliability should be 
provided, such as:  partitioning, diversity, block recovery, independence, information 
hiding, and system/software fault tolerance.  This description should explain how the 
likelihood of common cause failures has been eliminated or reduced.  In addition, a 
discussion of whether the product:  1) operates in a demand-mode or continuous-mode 
environment; 2) was designed to fail safe or fail operational; and 3) contains any 
monitoring and/or error detection and correction features should be included.  The results 
of static and dynamic analyses should be recorded, along with an analysis of the 
effectiveness of the reliability control measures.  Results from analyzing and interpreting 
product metrics should also be discussed. 

3.3 Qualifications of people and resources that demonstrate achievement of software reliability 
goals and objectives 

An explanation of why the education, experience, and certification of the professional 
staff is appropriate for a project of this reliability level should be provided. Likewise, a 
justification of why the hardware and software platforms, including automated tools, are 
appropriate for this project should be provided.  Results from analyzing and interpreting 
people/resource metrics should also be discussed. 

4. CONCLUSION/RECOMMENDATION 

The conclusion should summarize the information presented in sections 4.2.2 and 4.2.3 to 
demonstrate whether the software reliability goals and objectives have been met and 
make a recommendation regarding certification.  

5. CERTIFICATION RECORDS 

An accurate and complete chronological history of all certifications attempted should be 
maintained in the software reliability case file. 



 

 Page 1 of  3 

Contract for Acquisition 
of 

Commercial Aircraft Equipment with  Software Product 
 

1. INTRODUCTION 

1.1. Purpose and Scope 

1.2. Roles and Responsibilities 
 - customer 
 - supplier 
 - certification authority 

1.3. Expectations 
 - objectives 
 - software process 
 - specialty engineering (reliability/safety) 

2. REQUIREMENTS 

2.1. Graded Formality 
 - software product level based on application and supplier survey of capabilities 

2.2. Certification Requirements 
 - per DO178B with caveats per CAST-1 guidance/system safety/reliability level 
 - appropriate for the graded formality 

2.3. Key Performance Parameters 
 - include software reliability case as part of verification plan/case/results evidence 
 - include software safety case as part of verification plan/case/results evidence 
 - appropriate for the graded formality 

2.4. Supplier Survey 
 -  include requirement to conduct supplier survey for final product acceptance 

3. CONDITIONS AND CONSTRAINTS 

3.1. Schedule 

3.2. Budget 

3.3. Deliverables 



 

 Page 2 of  3 

A. Appendix A – Supplier Survey 

(a) RCTA/DO178B Certification Evidence Review 

 - minimal: Plan for Software Aspects of Certification 
   Software Configuration Index 
   Software Accomplishment Summary 
   Results of certification authority review of associated equipment 

(b) Key Performance Parameters Evidence Review 

 -  additional: verification plan/case/results evidence for software reliability 
   verification plan/case/results evidence for software safety 

(c) Supplier Capabilities Checklist (FAA N 8110.87) 

 -  Top Ten Practices Recommended by Neufelder 
 -  Score: 0 – none; 0.5 – partial; 1.0 – complete 
 

Table 1. Best Practices for Reliability 
Practice Supplier 

Score 
Customer 
Score 

Observations 

All requirements are mapped to system tests    
Requirements are reviewed before designing or 
coding 

   

System test beds are used    
Test plan started at least one phase of the life 
cycle before testing begins  

   

Testers use a FRACAS (defect tracking system) to 
determine what to test/retest 

   

All upgrades after a system test are regression 
tested 

   

Correction action releases per year <= 4    
All modifications made after a system test are 
regression tested 

   

FRACAS used for tracking all corrective actions    
Walk-thrus are performed for all phases of life 
cycle 

   

 



 

 Page 3 of  3 

 
 
 
 



 

as of 3/18/2003 10:43 AM Page 1 of 2 Case Study LOFI, Session 03  

IMA Inc Level of FAA Involvement Assessment 
 
1. IMA Inc COMPANY OVERVIEW 
Applicant company IMA, Inc is applying for approval of their Integrated Modular 
Avionics (IMA) product that is usually approved for Technical Standard Order (TSO) 
projects and then the installation by Supplemental Type Certificate (STC) and installed 
on new or in-service aircraft. The equipment provides standard capability required by 
airlines, and is regularly upgraded for improved capabilities. IMA Inc has prior TSO 
approvals on a number of aircraft and recently upgraded the software aspects of their 
Load Control software product to RTCA DO-178B Level A criteria.   In past programs, 
they have consistently demonstrated their willingness to commit the necessary resources 
and change their processes to utilize new technologies while maintaining a quality 
product and satisfying certification requirements. 
 
IMA Inc's product service history indicates almost no in-service difficulties with their 
products and their technology and system architecture are fairly stable. Replacement of 
obsolete parts is being planned and seemingly being well managed. They appear to have a 
stable in-house process for managing changes, even though almost every different aircraft 
installation requires some changes to the software. The development and verification 
environment is state-of-the-practice and new tools are introduced when economically 
advantageous. The company contracts through job placement agencies for low-level 
software testers. 
 
IMA Inc has 3 company designees on-site, 2 with software authority and 1 with electrical 
system authority, and the company occasionally contracts with a consultant Designated 
Engineering Representative (DER) for system approvals. One of the software DERs is 
very experienced and the other has been a DER for less than a year. The experienced 
software DER also is the manager for the software verification group, part of the 
engineering organization, and the less experienced software DER is in the company’s 
SQA organization, which is independent of the engineering organization and has highly 
qualified and experienced personnel. 
 
2. IMA Inc ASSESSMENT 
An experienced software Aviation Safety Engineer (ASE) involved with several previous 
projects for the company, and having previously conducted 2 on-site reviews, assesses 
IMA Inc on the new project to deliver the IMA units, in particular the Load Control 
software. The results of the assessment: 
 
Criteria 1: Application/Developer Software Certification Experience 
 Score: 20 out of possible 29 
Criteria 2: Application/Developer Demonstrated Software Development Capability 
 Score: 21 out of possible 44 
Criteria 3: Application/Developer Software Service History 
 Score: 36 out of possible 42 
Criteria 4: The Current System and Software Application 



 

as of 3/18/2003 10:43 AM Page 2 of 2 Case Study LOFI, Session 03  

 Score: 26 out of possible 42 
Criteria 5: Designee Capabilities 
 Score: 38 out of possible 55 
Total Score Results (TSR):  141 out of possible   212 
 
3. LEVEL OF FAA INVOLVEMENT FOR IMA Inc 
Using Table below with a Level A software assessment and TSR of 141 indicates that the 
Level of FAA Involvement (LOFI) should be MEDIUM.  There would be some need for 
National Resource Specialist (NRS) or Technical Standard (TS) support since a new 
authentication technology (digital signatures) is being used. For this project, the Aircraft 
Certification Office (ACO) may elect to perform one on-site review and some desk 
reviews, depending on their workload. Much of the data approval could be delegated. 
However, because it is a level A software project in the system, approval of the software 
accomplishment summary should be reserved by the ACO. 
 

Acronyms: 
ACO Aircraft Certification Office 
ASE Aviation Safety Engineer 
DER Designated Engineering Representative 
FAA Federal Aviation Administration 
IMA Integrated Modular Avionics 
LOFI Level Of FAA Involvement 
NRS National Resource Specialist 
SQA Software Quality Assurance 
STC Supplemental Type Certificates 
TS Technical Standard 
TSO Technical Standard Order 
TSOA Technical Standard Order Authorization 
TSR Total Score Result 
 
4. FAA MEDIUM LEVEL INVOLVEMENT FOR IMA Inc 
The following activities constitute the agreement between FAA and IMA, Inc for 
certification of the new IMA Load Control Software for use with certified IMA Units. 

Total Score Result SW Level A Software Level B Software Level C Software Level D
TSR <= 80 HIGH HIGH MEDIUM LOW
80 < TSR <= 130 HIGH MEDIUM MEDIUM LOW
130 < TSR MEDIUM MEDIUM LOW LOW

Level of 
FAA 

Involvement 

Example of Typical Program Decisions 

MEDIUM • DER has approval authority of SCI, SDP, SQAP, SCMP 
• FAA/TSO involvement for planning, reliability demonstration, final compliance meetings; 

approval authority of PSAC, Verification Plan/Case and SAS 
• FAA/TSO conducts on-site review as part of initial PSAC and final compliance meetings 
• FAA/TSO conducts desk reviews of  PSAC, Verification Plan/Case, SCI, and SAS 
• FAA/TSO requires submittal of PSAC, SCI, Verification Plan/Case, SAS 

 



 

as of 3/3/2003 3:35 PM Page 1 of 2 Case Study PSAC Activity Matrix, Session 03 

IMA Inc 
Plan for Software Aspects of Certification (PSAC) 

Life Cycle Activity Matrix 
 
 

Life Cycle 
Activity 

Verification 
Activity 

Reliability Activity Claim Evidence Rationale References 

Requirements Formal 
Inspection 

-DRE  
    Major-Severity Level 1,2,3,4 
    Minor-Severity Level 5 
-Traceability Analysis 

-DRE will be at least 70% based on 
defects found and root cause sources 
throughout life cycle 
-Defects/page<= 0.5 
 

-#Defects 
-Defects Source 
-DRE 
 

-Formal Inspection is 
recognized as a "best 
practice" 

-Formal 
Inspection 
Reports 

Design Formal 
Inspection 

-DRE  
    Major-Severity Level 1,2,3,4 
    Minor-Severity Level 5 
-Traceability Analysis 

-DRE will be at least 70% based on 
defects found and root cause sources 
throughout life cycle 
-Defects/page<= 0.5 
 

-#Defects 
-Defects Source 
-DRE 
 

Formal Inspection is 
recognized as a "best 
practice" 

-Formal 
Inspection 
Reports 

Design Analysis of 
potential 
failure modes 

-Software FMEA and FTA -State chart design and code analysis 
ensures no software defects exist 
that could cause Major Failures 

-Failure Modes 
-Fault Trees 
-Mitigation Approach 

SW FMEA and SW 
FTA support System 
Analyses 

-Detailed 
FMEA and 
FTA analyses 

Code Formal 
Inspection 

-DRE 
    Major-Severity Level 1,2,3,4 
    Minor-Severity Level 5 
-Traceability Analysis 

-DRE will be at least 70% based on 
defects found and root cause sources 
throughout life cycle 
-Defects/KSLOC<=7 
 

-#Defects 
-Defects Source 
-DRE 
 

Formal Inspection is 
recognized as a "best 
practice" 

-Formal 
Inspection 
Reports 

Unit Test Test to low 
level 
requirements 

-Requirement Coverage 
-Feature Coverage 
-Path Coverage 
-Statement Coverage 
 

-100% 
-100% 
-100% (logic path) 
-100% 

-#Defects 
-Actual Coverage 
Metrics 
-Unit test results 

-Coverage testing is 
considered a 'Top Ten 
best practice for 
software reliability' 

-Development 
Folders 

System/ 
Integration Test 
Plan 

Formal 
Inspection 

-DRE  
    Major-Severity Level 1,2,3,4 
    Minor-Severity Level 5 
-Traceability Analysis 

-DRE will be at least 70% based on 
defects found and root cause sources 
throughout life cycle 
-Defect density = 0.5 
 

-#Defects 
-Defects Source 
-DRE 
 

-Formal Inspection is 
recognized as a 'Top 
Ten best practice for 
software reliability' 

-Formal 
Inspection 
Reports 

System/ 
Integration 
Testing 

Test to High 
Level 
Requirements 

-Requirement Coverage 
-Feature Coverage 
-Operational Profiles 

-100% 
-100% 
-Defect pKSLOC <= 1.0  

-Coverage Metrics 
-Defect data 
-Reliability model 

-System testing and 
regression testing when 
changes are made is 

-Formal 
product 
definition -



 

as of 3/3/2003 3:35 PM Page 2 of 2 Case Study PSAC Activity Matrix, Session 03 

Life Cycle 
Activity 

Verification 
Activity 

Reliability Activity Claim Evidence Rationale References 

-Reliability Growth 
 

-Reliability >= 0.99 ph 
  h=ex hour 
    ~ 2500 IMU op hrs 

results 
-Test Results 

considered a 'Top Ten 
best practice for 
software reliability' 

Verification 
Report 

General 
FRACAS 

Failure 
reporting and 
corrective 
action system 

-Track defects throughout life 
cycle; root cause analyses; 
defect density; failure rate 

-FRACAS system will reduce 
rework and provide for process 
improvement 

-Defect identification 
and corrective action 
documentation  

-System testing and 
regression testing when 
changes are made is 
considered a 'Top Ten 
best practice for 
software reliability' 

-FRACAS data 
base 

FAA 
Certification 
 
 

-FAA Initial 
Review 
-FAA 
Verification 
Review 
-FAA Final 
Compliance 
Review 

-Provide reliability evidence at 
each review, including 
reliability 
demonstration/acceptance at 
Final Compliance Review 
acceptance metrics 
 

-All review actions will be resolved 
prior to delivery of Load Control 
Software to customer 

-Review action items 
-Final Compliance 
Review 
-acceptance metrics 
-PSAC 
-Verification Plan/Case 
-SCI 
-SAS 

-FAA LOFI determined 
by applying FAA 
guidance 

-FAA 
Certification 
Data 

NSIA Air 
Acquisition 

-FAA 
Certification 
Evidence 
Review 
-Key 
Performance 
Parameters 
Evidence 
Review 
-Supplier 
Capabilities 
Checklist 
Review 

-Same as for FAA Certification 
-Customer assessment of 
supplier capabilities/KPP 

-Customer independent reviews and 
KPP assessment provides additional 
assurance that reliability goals are 
met. 

-Same as for FAA 
Certification 
-KPP values 
-Supplier checklist 
score 

-Independent 
verification is a best 
practice and provides 
customer with specific 
capability to ensure 
adequate goals are set 
and met by the supplier 

-FAA 
Certification 
Information 
-IMA project 
configuration 
management 
system 
-IMA FRACAS 

      
 



Procurement of Software Dependant SystemsApril 3-4, 2003

Appendix E

Abstract and Biography



 

 

The Procurement of Software Dependent Systems 
Making Systems Reliable through Software Reliability Engineering Techniques 

Dr David E Peercy, Sandia National Laboratories 
 
This presentation provides an introduction to software reliability with a case study example.  The 
presentation illustrates how one might establish a software reliability program as part of the procurement 
of software dependent systems.  Recently developed Society of Automotive Engineers (SAE) standards 
are the primary source for  the software reliability program concepts.  The case study is specific to FAA 
Aerospace product certification and illustrates hypothetical interactions of customer, supplier, and 
certification authority with a focus on example software reliability requirements and results. 
 
A software reliability program includes activities across the full system/software life cycle that provide a 
level of confidence the software will not fail during its operational mission.  The goals and objectives of a 
software reliability program and the key principles of determining, meeting, and demonstrating customer 
requirements will be discussed.  The context for software reliability includes integration with system 
reliability, design for and operational measurement of reliability, and use of a management planning and 
case evidence framework.  
 

 
Dr David E Peercy 

Sandia National Laboratories 
Biography 

 
Dr. Peercy is a Distinguished Member of the Technical Staff at Sandia National Laboratories responsible 
for quality engineering of critical software systems.  He is lead quality engineer for Use Control software 
applications, including over 20 Mark Quality software products delivered to DoD customers over the past 
four years.  He is lead quality engineer for the W80-3 Crypto Coded Switch, principal investigator for the 
ASCI V&V program, core Sandia representative to the Nuclear Weapons Complex Software Quality 
Assurance Subcommittee, and Chair of the SAE G-11 RMSL Software Committee developing 
International software supportability and reliability standards.  Dr Peercy has software publications in 
reliability, maintenance, supportability, and process improvement.  Dr. Peercy received his Ph.D in 
Mathematics from New Mexico State University in 1971, is a Certified Software Quality Engineer, and a 
member of several professional societies: ASQ, IEEE, ACM, AIAA, and SOLE. 
 



 

 

Dr David E Peercy 
Office: 505-844-7965 

Email: depeerc@sandia.gov 
Sandia National Laboratories 

P.O. Box 5800, MS-0638 
Albuquerque, NM 87185-0638 

 
 

Biography 
 
Dr. Peercy is a Distinguished Technical Staff Member at Sandia National Laboratories (SNL) responsible 
for quality engineering of critical software systems.  He has been the lead quality engineer for Use 
Control software and Use Control applications that have been developed over the past 10 years.  The most 
recent effort is called the Code Management System (CMS) project that will produce a common family of 
products and applications over the period 1997 through 2005 that will replace all Use Control equipment 
in the field.  Dr. Peercy is also the lead quality engineer for the Crypto Coded Switch component of the 
new W80-3 Stockpile Life Extension program.  Dr Peercy also provides V&V program consultation for 
the Advanced Simulation and Computing Program (ASCI) and is the core representative for SNL on the 
Nuclear Weapons Complex Software Quality Assurance Subcommittee (SQAS). 
 
Dr. Peercy is the chairman of the Society of Automotive Engineers (SAE) G-11SW Software Committee 
developing International standards and guidelines for software supportability and software reliability.  He 
has taught short courses / tutorials on a variety of software subjects and has numerous publications in 
software engineering areas such as software reliability, software maintenance, software supportability, 
and software process improvement.  
 
Dr. Peercy has been a reviewer for numerous standards including the Pascal and ADA language 
standards, the National Computer Security Center Trusted Network Evaluation Criteria and various IEEE 
standards.   Dr. Peercy received his Ph.D. and Masters in mathematics from New Mexico State University 
and his Bachelors in Applied Mathematics from the University of Colorado.  
 

Professional Organization Affiliations 
 

• American Society for Quality (ASQ), Certified Software Quality Engineer (CSQE) 
• IEEE Computer Society 
• Association for Computing Machinery (ACM) 
• American Institute of Aeronautics and Astronautics (AIAA) 
• International Society of Logistics (SOLE)  

 


	Appendix A Glossary of Terms.pdf
	Glossary of Terms
	Primary Acronyms
	Primary Definitions

	Case Study Material.pdf
	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)



	Case Study Material.pdf
	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)


	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)


	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)



	Case Study Material.pdf
	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)


	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)


	Example Contract for Acquisition.pdf
	INTRODUCTION
	Purpose and Scope
	Roles and Responsibilities
	Expectations

	REQUIREMENTS
	Graded Formality
	Certification Requirements
	Key Performance Parameters
	Supplier Survey

	CONDITIONS AND CONSTRAINTS
	Schedule
	Budget
	Deliverables
	RCTA/DO178B Certification Evidence Review
	Key Performance Parameters Evidence Review
	Supplier Capabilities Checklist (FAA N 8110.87)




