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Abstract: Hard real-time systems often encounter the probiem of insufficiert computing power for the
software to meet the specified tming constraints. This results in the need for redesign, code
optimization, severe support problems, and, of course, higher costs.

The author proposes a methodology 1o estimate early in the System design cycle the required CPU
computing power and CPU clock frequency, as to be able 10 meet the specified scheduling and timing
constraints, and to ensure the future growth of the system. Finally, he also provides guidelines for the
assessment of the software growth capacity.

A. TOO MUCH SOFTWARE, TOO LITTLE POWER

It is quite typical that, for airborne computers, and for hard real-time systems in general, the software designers find
out to their dismay -usually halfway through the Design- that they wili be unable to comply with the timing
requirements, as the software will use up far more computing capacity than was initially expected. This usually
implies a redesign of the hardware, with the associated costs and programme delays, or an extensive optimization of
the software, unfortunately also to a a great cost.

This kind of situation is bad for the designers, but also for those that have to ensure that a particular piece of
software is made supportable, i.e., that it can be properly modified in the future. Specially on items with a very long
life cycle -and an aircraft has typically a life cycle of 20-30 years- there is an extreme need for growth, as the system
will have to be modified in the future, in order to adapt to changing environments, new or modified functionality, or
simply faster response times due to the interfacing with more modern equipment. Yet, if optimization is already
reguired during the design, it is unlikely that the software could be enhanced in the future. This will result in a severe
growth handicap, specially for advanced weapon systemns, and ultimately it will cause replacement of the “limited"
computer by a more powerful one - and almost certainly also requiring the development of new software,

Finally, this problem is also very preoccupying for the end users, given the great operational impact that such
limitations have, the associated reduced functionality, the relatively small useful life of these systems and the
extremely high life-cycle cost for such unsatisfactory results. Keeping in mind that software support can account for up
10 80% of the full life cycle cost, a useful life of at best & years would imply also an annual support cost of 50% the
development cost! But, as Wing Cemmander B.J. Barker and Squadron Leader B. Hambling from the RAF [Barker32]
report

Within the UK the Jaguar development was limited from the ourset by fully occupied core space and
processor time. The Tormnado GRI computer power reguirement was doubled even before initial
development was completed; current analysis shows that the Harrier GRS is likely to enter service with
considerably less spare computing capacity than originally specified.

While this was stated back in 1982, the problem is still on-going. Many of the B2-A computers (and in particular the
Fuel System computer) had severe computing capacity problems even before delivery of the aircraft. On another on-
going aircraft development program, a recent survey of 8 major airborne equipment showed an average CPU usage
of 68% - halfway through development!
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Possibly part of the problem is that, in most cases, the hardware has been selected before the specification of the
software, and without a serious assessment of the software size. Lack of software metrics, but also lack of information
about compiler efficiency or CPU throughput and, specially, no initial estimation of the required scheduling needs,
has lead to the selection of inadequate CPUs, that later on will prove to have insufficient computing power to process
the software that will execute on them. Similarly, an excessive standardisation such as selection of a same single CPU
for all computers on an aircraft, independent of their individual computational needs- often contributes to aggravate
the problem. Uitimately, the software engineers are faced with an impossible choice - how to shoehorn too much
functionality intc a computer with too little computing power. Under these circumstances, software growth cepability
becomes an empty word, and the software users will face increasingly high software costs.

It is, however, possible to predetermine the processing power needs, on the basis of well-established software
engineering techniques, as well as to assess the required growth capacity for software support purposes, The method
described in this paper, called Reversed Rate Monotonic Analysis (RRMA) is based on the extension of one of such
techniguss.

B. RATE MONOTONIC ANALYSIS

Liv and Leyland [Liu73] studied the problem of scheduling a set of independent periodic tasks with hard periodic
deadiines. in their classic paper, they determined that the optimal fixed priority algorithm was the Rate Monotonic
Algorithm, where a task with a shorter period is given a higher priority than tasks with longer ones. Given that the
worst case utilization is bound, the Rate Monotonic Analysis (RMA) has been widely used in software engineering for
the schedulability analysis of multitasking systems, specially in hard real-time systems. RMA is recognized as a basic
engineering tool for software design, and has been widely discussed, such as in [Sha89], [ShaS0].

The basic theorem for the Rate Monotonic Scheduling as per [Liu73] is given by:

Theorem 1. A set of n independent tasks scheduled by the Rate Monotonic Algorithm will always meet its
deadlines, for all task phasings, if
1
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where G and T; are the execution time and period of task T, respectively.

This Theorem offers a sufficient worst case condition that characterizes the schedulability of a set of tasks under the
Rate Monotonic Aigorithm. U(n) indicates the bound of processor utilisation rate that is required by the different
tasks. It is possible to use the additional processing capacity, say, for a set of background tasks with no strict timing
requirements, but none of the background tasks will be able to meet any kind of hard deadlines.

Now, the RMA methodology has been used so far to determine during the early software design phases the
schedulability of a certain set of tasks with hard deadlines, by estimating their execution time. One of the possible
methods 1o estimate this execution time is, obviously, to estimate the size of the individual tasks (in effectively
executed LOC), and then multiply this value by an average execution time per LOC, for that particular CPU.

The Reversed Rate Monotonic Analysis (RRMA) takes however the opposite approach, by assuming that a set of tasks
will be schedulable under the Rate Monotonic Algorithm, and then calculating backwards the computing power that
would be required to meet this assumption. Given the source code to be executed for each individual task, it would
suffice to determine the average execution time per LOC to identify whether a specific CPU could provide the
necessary throughput.

While John Lehoczky et al. [Lehoczky89] determined that the algorithm proposed by Liu and Leyland was quite
pessimistic, and showed that the threshold of schedulability by the Rate Monotonic Algorithm is located at 88% of
the CPU throughput, it must be pointed out that early in the design -and specially in the architectural design- there
might be no such thing as a defined solution, and, given also the little raliability of estimations at this stage, it would
be advisable to consider the absolute worst case, given the high risk associated to this selection,

C. TASK EXECUTION TIME

The Rate Monotonic Algorithms is based on two facters for each task 7 the execution time C; and the period T; of
that particular task. Now, the periodicity of specific functions can usually be determined quite early in the
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architectural design - after all, you cannot specify an architecture without knowing what it will do. The estimation of
the execution time is however more inaccurate, as it will depend both on the functionality and on the CPU processing
power. Practice shows that the estimation of one single factor can be reasonably accurate - but a2 combination of two
is usually not very realistic

On the other hand, it is possible to reasonably estimate the actually executed code of a task, be in Lines of Code
(LOC), Bangs, Function Points or any other appropriate metric that ultimately provides a size of the code that will be
executed during each task iteration. In fact, the amount of executed code is actually easier to estimate than the total
of developed code, which is what is usually done, as it is strictly related to the functionality that it has to embody.
What is the required is the conversion of the executed code size into an execution time.

Theorem 2: The execution time C; of any running periodic task 7; is always such that

_RxS+m
C=—"p

where C is the execution time, S; the number of executed high-level statements of task 7, R;
the conversion ratio of source statements into machine code instructions for the used compiler,
ms the number of machine code instructions required for context switching, and P is the
processing throughput (number of machine code instructions/second) for that particular CPU.

Proof: A periodic task executes during each of its periods the application code of the task, as well as the necessary
code to switch between that task and the next one, if there is such. Given that each of the high-level code statements
is converted by the compiler into R; machine code statements, the application code will consist of Ri % S; machine
code statements. If the context switching takes on average m, machine code instructions, the total machine code to
be executed during each task period shall be R; x §; + m, A CPU with a processing power P will execute p machine
code instructions per second. Hence, the total processing time C; will be the aforementioned total number of machine
code instructions divided by p.

While in case of one single task the context switching is obviously 0, in case of multiple tasks the context switching

time can be quite important, specially when there are tasks with a very short period, which adds a quite heavy task
switching overhead.

The context switching in Theorem 2 is given in machine code instructions, as in most cases this will be performed by
the compiler run-time system. The m; value can be obtained either from the compiler vendor, by effectively counting
the number of instructions in the context switching routine of the run-time system, or by benchmarking the context
switching time ¢, and making ms = ¢, x P, being P in this case the throughput of the CPU where the benchmarking
took place. In case the context switching were performed by a specifically written scheduler, then m, would be
replaced by S; = R, where S, would be the number of effectively executed source lines of code of the scheduler, and
R the LOC-to-machine code ratio of the compiler used for the compilation of the scheduler.

't should be noted that the conversion ratio R; might be different for each different task, as each of them might have
been written in a different programming language, and use therefore a different compiler. If written in Assembler, R;
would obviously be 1, but for other languages one might expect a higher value. The number of executed code
statements 5; would of course be dependent on each individual task, but the throughput P would not be related to
any individual task, as it is a hardware characteristic that would apply to all tasks executed on that CPU.

Theorem 3: A set of n independent tasks scheduled by the Rate Monotonic Algerithm will always meet its
deadlines, for all task phasings, if

i
P> 1 Y R, x S, + m;
- U(nj i=1 Tj_
where P is the processing throughput, mq is the number of machine code instructions required

for context switching, and R;, S; and T, are respectively the compiler instruction conversion
ratio, the number of executed source code statements and the period of task T; respectively,
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Proof: If we multiply both sides of the equation by U(n)/P, we obtain:
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in this equation we now replace (R; X S; + m,) / P by Cj as per Theorem 2, and we obtain the equation of Thecrem
1, which states that this set of tasks is schedulable as per the Rate Monotonic Algorithm.

It should be observed that the required computing power depends only cn the size of the individual tasks (S), the
period of those tasks (T; ) and the compiler efficiency (R; and mg), which is also what one could reasonably expect.
Obviously, the size of the executed source code 5; will not depend on the target CPU, in case it is written in a high-
level language. However, both R, and m, will greatly depend not only on the individual compiler, but also on the
individual instruction set of the specific CPU. It should be evident that both will be quite high on, say, a RISC
machine (more individual operations required), but this will be offset by the great processing power of such
machines, On the other hand, a CiSC computer with a more sophisticated instruction set will have less computing
capacity, which will be compensated by much lower R; and m, values. The RRMA approach cannot be used for
comparison purposes between different CPUs, as the throughput value will in that case reference different instruction
sets, and these comparisons become meaningless.

E.. CPU FREQUENCY DETERMINATICGN

The RRMA is therefore used to determine the computing power requirements on a specific CPU, and the result is
given in machine code instructions per second. Given that this CPU is clocked at a certain frequency, the execution of
each machine code instruction will be function of the CPU clock frequency, and therefore:

f=P x ¢, 4)

/

where ¢, is the average number of machine cycles required for the execution of one machine code instruction.

Equation (4) shows a linear relationship between the frequency and the processing power of a specific CPU. Thus, and
given that ¢y, is constant, doubling the frequency would also imply doubling the processing power. Unfortunately,
things are not that simpie. The frequency cannot increase indefinitely, as the CPU has been designed with a
maximum operating frequency in mind, and it is not possible to go beyond the operating range. But, even in case
this range is respected, the CPU will often be constrained by the computer architecture. For example, slow memory
will introduce additional waitstates, slowing down the processing throughput. Similarly, shared memory with DMA
characteristics or reduced databus bandwidth will also generate serious processing bottlenecks. Experimentally, the
relationship between frequency and processing power has been shown to be:

M xf=Px ¢, (5)
where Alf) is a complex function depending on the computer architecture, with 0 < Aff) < 1.

Theorem 6: A set of n independent tasks scheduled by the Rate Monotonic Algorithm will always meet its
deadlines, for all task phasings, if

Ct =~ R xS +m
(2t & T

where f is the CPU frequency, ¢, is the average number of cycles per machine code instruction,
m, is the number of machine code instructions required for context switching, A(f) is a compiex
function depending on the computer architecture, with 0 < AMf} < 1, and R;, S; and T; are
respectively the compiler instruction conversion ratio, the number of executed source code
statements and the period of task 7 respectively.

Proof: By muitiplying both sides of the equation by Mf)/cy,, and then replacing the left-hand side of the equation by
P, as indicated in equation (5), we obtain the equation given in Theorem 3, which states that these tasks wili be
schedulable as per the Rate Monotonic Algorithm.,
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Let us assume that, early in a development programme, we have to assess the throughput requirements for a certain
CPU. On the basis of the processing specification, it is determined that there will be a total of six different tasks, with
the characteristics outlined in Table 1. We aiso assume that we wiil use a single programming language, and
benchmarking of individual compilers shows that the typical number of generated instructions per LOC for this type
of application is R = 5.7 instructions. Qur compiler vendors, on the other hand, inform us that tha typical number of
context switching instructions mg = 215,

Tabie 1
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
Effective Lines of Code §; 3,600 1,700 Q700 8,900 9,800 4,800
Period T; 40 ms 20 ms 320 ms 160 ms 100 ms 40 ms

By applying the equation of Theorem 3, we obtain that the required processing power P:

i 5.7x3600 + 215 5.7x1700 + 215 5.7xQ700 + 215 5.7x8000 + 215 5.7x8800 + 215 5.7x4800 + 215
Pz — “§ + + + e e
u(6) 0.040 0.020 0.320 0.160 0.100 .40
P = 1.361%(518,375 + 495,250 + 173,453 + 318,406 + 560,750 + 344,688) = 3.28 MIPS

A processing power P of 3.3 MIPS will therefore suffice to meet the execution requirements. Unfortunately, we cannot
benchmark any computer running this CPU, so it is difficult to calculate the required frequency in order to obtain the
above required processing power. However, the CPU manufacturer states in the microprocessor manua! and Technical
Data Sheets that the observed (weighted) instruction timing takes on average 6.7 ciock cycles. Therefore, we can state
that ¢y = 6.7 cycles/instruction. We will assume that the computer architectuie wili put no constraints on the CPY
throughput, that is, A(f)=1. By applying Theorem 6 we therefore obtain:

6.7 5.7x3600 + 215 57x1700 + 215 5.7x9700 + 215 5.7xBO00 + 215 5.7x9800 + 215 5.7x4800 + 215
f P — 4 + + N pp— + - PRE—
1 = Li{6) 0.040 0.020 0.320 0.160 0.100 0.40
f = 2.1187*(518,375 + 495,250 + 173,453 + 318,406 + 560,750 + 344,688) = 21.98 MHz

Given that it is unlikely that the CPU manufacturer can supply a processor for such a weird frequency, a CPU clocked
at 25 MHz will obviously do the job.

G. SOFTWARE SUPPORTABILITY ASPECTS AND RRMA

So far we have discussed how to calculate early in the design the required computing power for the scheduling of a
set of predefined tasks, that will implement a specified functionality. While this is no doubt quite useful, it is also
very necessary to assess the application of RRMA to software supportability aspects, i.e., the capability to be able 1o
extend that software in the future.

At the beginning of this paper, we stated the need for growth, given that a limited growth also implies & short
operational life and a very high life-cycle cost. Note that it is more expensive to "fit" the possible enhancements into
an already overburdened computer, due to the need for redesign and optimization - but, on the other hand, it is
usually not cost-effective to provide a massive computing power that will not necessarily be required in the future, A
certain amount of power is required - but not too much!

It is for this reason that software supportability requirements are included in system specifications, quite often as a
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requirement such as “The CPU shall have a 100% growth capacity in processing power"

Such a requirement is unfortunately not clear and, whatever it means, is usually not met. The intention of the writers
of such specifications is probably that the software execution should not burden more than 50% of the CPU time,
and sometimes the specification even uses this wording. The idea, apparently, is that if the software takes only 50%
of the CPU utilization, it could process twice as much functionality, or twice as much code.

This idea is wrong. While this could be true in a linear program, modern real-time systems are multitasking entities,
and the sequential approach can no longer be applied. John Lehoczky et a/. [Lehoczky82] showed that the threshold
of schedulability by the Rate Monotonic Algorithm is located at 88% of the CPU throughput. Though Liu and Leyland
[Liu73] showed that the optimal scheduling aigorithm was the nearest deadline algorithm, which can have a worst
case bound of 1.000 (i.e., can meet all deadlines up to full processor utilization), the RMA is more realistic, not only
because of its simplicity, but also as it can still meet the scheduling requirements with transient overloads, or even
with aperiodic tasks [Lehoczky87], [Sprunt8g].

But, it only 88% of the CPU power is effectively usable for muititasking systems, then a system using 50% of the CPU
will have a growth capacity of only 88-50=38% of the CPU throughput! Still worse, if we consider the absolute worst
case, where the effectively usable CPU power would be equal to U(n), this growth capability would be even worse -
for six tasks, we would have a growth of only U(6)-50% = 73.5%-50% = 23.5%. Given that the worst case
utilization bound of U(n) converges to loge2 = 0.693, in extreme cases [many tasks) the growth might be of only
68.3%-50% = 19.3%!

When starting to specify growth, it should be clear what should grow. For example, to obtain a "100% growth", the
most easy approach would be to double the requirement for the processing powsr P, or alternatively the frequency f.
In our previous example, this would imply a frequency of 43.96 MHz. But would we really "double” the capacity?

Two further examples will clarify this. in one case, we will double the size of the executable statements of each task
as given in the previous example, in the second case we will duplicate each of the tasks, that is, for each of the
existing tasks we will create a second task with the same executable code and the same task period.

In the first case, and given that each task 7; will ultimately execute 2 x S statements, the equation of Theorem 3 wil!

be: 5
Cx R x285+m, _
f> ) = UG6) };{ T =43.75 MHz

Note that this value is slightly lower than the one that we would have obtained if we had doubled the frequency that
we had previously obtained. However, if we duplicated each of the tasks, we would obtain:

Crm : R xS +m _
f> ") = (1) i);lzx T =4528 MHz

The higher value is explained partly because we have to use U(12) instead of U(6), as we will have now a total of 12
tasks. Similarly, and giving that there are more tasks now, the context switching will take place more often, alsc
contributing to additional computing power requirements.

The two examples given above demonstrate that it is not sufficient to assess the potential growth of the executed
code for supportability purposes, but that it is aiso necessary to assess the future schedulability requirements,

Here, unfortunately, we enter a more uncertain ground, as in most cases it is not clear how the system will be
expanded when the design is made. It is however a very fertile ground for Pre-Planned Product Improvement, by
establishing during the system architectural phase already the potential baselines for extension of the system. For this
purpose, an asessment of potential tasks has to be made, defining both their length and shortest expected periodicity.
With this, a set of “Dummy" tasks are created, and the established values are introduced in the RRMA equations as if
they did really exist, thus obtaining the supportability requirement.

Of course it would be too much to expect that tasks with exactly the same length and period would be generated
during software support. Though the gift (curse?) of prophecy is assumed 1o be part of the prerequisites for the job
of software [ogistician, a fittle bit of common sense and imagination are more useful than the crystal ball. It is hard
work -but not too difficult- to assess additional data polling or communication with faster computers (given free
databus bandwidth), interrupt handliers (free interrupt vectors), additional signals to be processed (free channels) and
some possible data manipulation that could be implemented in the future. It is not necessary to have it spelled cut

-
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and exactly predict what will be added in the future - it would be sufficient to have tasks with a same computationa
weight, meaning tasks whose processing power requirements would be the same as the postulated ones.

This computational weight for a given task Tj is given by:

Wt ) R, xS +m.
; - nn
R T 5 E R] x S + m,
j i=1 Ti
Thus, for the example given adove, task 71 would have a computational weight of 21.5%, three times more than
task 73 (7.2%), despite the fact that this latter executes two and a half times as much code as task 7 each time it is

executed.

It is for this reason that, during support, this computational weight becomes important: As soon as you need
optimization, the tasks with a high computational weight are the ones to optimize first, as there each little
optimization will have the greatest impact.

H. A WORD OF CAUTION

The RRMA is not a panacea, and shouid be applied only while being aware of its limitations. The first one is that it
does NOT provide an exact value of the computing power that is required, but rather an upper limit. Thus, it is
possible 10 go for excessive power - though in most cases the excess will be within a very reasonable margin.

Similarly, it must be understood that the RRMA is used on the basis of estimations - and all estimations are fallible,
as they are performed by human beings. For example, some people find it hard to estimate the amount of effectively
executed code. If a certain function has to be performed ten times, they think immediately about a loop - and forget
that the code in the loop will be executed ten times. An if statement, on the other hand, does not execute
completely - an average for all different conditions paths should be taken. But they cannot help thinking about an
implementation when they should concentrate on the functionaiity. Estimating the functionality is more accurate and
even easier than thinking about the total of the code - but it does take some getting used to.

On the other hand, this kind of analysis forces the system architects to concentrate on what the software does or is
supposed to do before the final specification of the hardware, thereby reducing the risk of careless estimations. Given
that it is also necessary to determine the periodicity of the individual functionality, in some cases this might even
result in a better understanding of what the system does and, should the reguired computing power be unfeasible to
obtain (tasks with extremely short periods), might lead to a different hardware/software allocation, or even to the use
of multiple processors. The opposite is also true - the RRMA might show that even in the worst case there is no need
for parallel processing.

Note that RRMA does not assume that the tasks will be scheduled under the Rate Monotonic Algorithm - only that
they could be scheduled that way. This implies that there is at least one scheduling method that would permit
meeting all hard deadlines without having to resort to hardware or software redesign, or extensive optimization.
Similarly, it ensures that at least 100-U(n)% of the CPU will be frae 10 perform background tasks without timing
requirements, such as Built-In Test (BIT). Should a higher percentage be however required, then the corresponding
code could be added as an additional task with a long period.

Finally, RRMA cannct be used either for comparisons between different CPUs - the comparisons are meaningless as
the instruction sets are different. MIPS as a power throughput measurement is a lousy metric for comparison
purposes, and should be used with care, possibly only with processors of a same family, with a very similar
instruction set. However, RRMA will permit to define the minimum computing characteristics when applied to
different CPUs and compilers, so that the hardware designers can select a candidate on the basis of cost, reliability,
availability, power consumption, etc., without having also to worry wnether it will have the necessary performance

As a final note, it should be noted that this paper considers only the case of a single CPU. However, the RMA
Methodology can be also used for Distributed System Design {Sha®2). The application of RRMA is analogous, though
applying a P for the processing power of the CPU j on which a specific task r; is executed.

It should be made clear that RRMA is a tool, and a tool can be both used and abused. But, if properly used, RRMA
<an provide a helpful hand, and of course it will be much better that estimating the required computing powsr by
observing the flight of the sacred geese.
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