JOSEPH J. POTOCZNIAK

Current Position. Mr. Joseph J. Potoczniak is Chief of the Replication, Distribution, Installation, and Training (RDIT) Group at the Communications�Electronics Command (CECOM), Research, Development, and Engineering Center (RDEC), Software Engineering Directorate (SED), Fort Monmouth, New Jersey 07703�5207.

Previous Positions. He has taken leave from his former position as Chief of the Operations and Maintenance Division at CECOM SED for five years to organize and establish the Software Logistics concepts and objectives for CECOM. He has over twenty�four years of experience with software and software systems.

Education: He holds a Bachelor of Science in Industrial Engineering (BSIE), a Master of Science in Management Science (MSMS), and a Master of Science in Electronics Engineering (MSEE).

License: He is a licensed Professional Engineer in the State of New Jersey.

Contact At: U.S. Army CECOM

 	 AMSEL-RD-SE-RDIT (J. Potoczniak)

	 Building 1210

	 Fort Monmouth, NJ 07703�5207.

Telephone: 908�532�0532, DSN 992�0532. �Presenter: Joseph J. Potoczniak

Title: Software Logistics � The Emerging Giant

Track: 3

Day: Thursday, 14 Apr 94

Keywords: Software, Logistics, RDIT, Fielding, Software Logistics, Rapid Reaction.

Software Logistics � The Emerging Giant

	Introduction: The Impending Wave Of Battlefield Software. In the upcoming years, the Army will field over three hundred different battlefield systems. Hundreds of thousands of systems will be in the Army in use on the battlefield. For example, there will be tens of thousands of Data Transfer Devices (DTDs) supporting the SINCGARs Radio in the Army arsenal and up to one-hundred thousand used by all the services. Printed circuit boards (PCBs) that house firmware will be in use by the hundreds of thousands. There are already thousands of tanks that have been fielded with embedded software. Helicopters and other aircraft will serve as platforms for thousands of software based systems. Communications, command and control, navigation, fire support, air defense, and other categories of battlefield systems will be dependent on software for their mission performance. The era of software has emerged and provides many of the battlefield capabilities that are today taken for granted. With the emergence of these battlefield systems, software logistics is also emerging.

	Software on the battlefield is often masked by the terms "the electronic war", "controlling the electromagnetic environment", "intelligent systems", "brilliant systems", "smart systems", or by other terms that are accurate, but do not reveal the key non-human component of their capability and accuracy. That component is software. Without software, these systems would still be on the drawing boards and in the science fiction magazines. As the sophistication of the Army's weapons grows, so will the sophistication of the lines of code that allow them to perform their mission. Without software, there will be no modern battlefield in any sense that we know it today.

	Software has been touted as the force multiplier. While software does not replace soldiers on the battlefield, it enables them to magnify their effects and the effects of their weapons in many ways. Software logistics is logistics that supports the soldier who uses today's and tomorrow's systems. In reality, the soldier will be using computer programs that add tools and weapons capabilities that would likely not be possible otherwise. With software, comes its characteristic rapid ability to change. And, along with the flexibility and strength of change comes the requirement for software logistics.

 	Peacetime software changes may occur at the rate of one per day if only one change is made to each system each year. Even if the average number of software changes per battlefield system per year is less, such as one change for each system ever two years, then there will still be several software changes per week that the Army must perform. Considering that each software fielding varies in length of time from days to months, it is easy to project that there will be many fieldings in progress at any one time during the year.

	There is already a large and growing number of computer program media on the battlefield and there will be millions of software media which will be used by these systems. Since software will be increasingly critical to the accomplishment of each system's mission, it is important to note what the Army says about the software engineering support for these systems? Does it provide institution wide guidance? Consider that without the software, most battlefield systems would not perform their missions. Today's communications systems would not communicate. Modern command and control would be crippled. Enemy targets would not have to be concerned about software driven sensing devices. Navigation would again rely on compass and paper maps, not the software in the Global Positioning System (GPS).

	The great strength of software is that it's code can be changed rapidly. New situations on the battlefield can be accommodated much more quickly than with hardware changes. New requirements do not have to wait for years to process a hardware modification. Software can be changed for a rapid response to new requirements.

	There is a school of thought outside the software world that mistakenly argues that software should be made perfect the first time and then not need any support once it is fielded. This thought ignores some basic facts: what happens to requirements from day to day and writing perfect software is almost, if not totally, impossible. Writing perfect software is cost prohibitive in that there are millions of tests that would have to be performed which would take years to complete, which brings us to the second point. During those years, the battlefield mission requirements which are the sole reason for the writing of software, would likely change and the software would likely become outdated and possibly useless. The reasons software changes are reflected in Figure 1. In all, software has eight drivers of change: defect corrections; threats; doctrine; safety; interoperability; hardware changes; technology insertion; and, functional changes. They are the drivers in the sense that they place opportunities and potential capabilities before the decision maker and they must be decided upon. While software code can be changed rapidly, the logistics of software does not exist to bring these changes to the systems that need them. These software drivers and the changes they bring impose software logistics requirements upon the Army. The awareness of this fact is moving through the Army and software logistics is being discussed, considered, and slowly accepted.

	 Experience in Desert Storm has shown that software changes may occur at the rate of several per month for any one particular battlefield system, especially threat sensitive systems. During conflict, the number of software changes should be expected to increase, perhaps dramatically. Noting that any one software fielding for a battlefield system takes weeks to months to complete, it is easy to see that at any one time in the Army of the year 2000 and later, an estimated forty or more battlefield systems will be in a state of having software changed. The implications of this scenario are critical to maintaining success in combat. If not managed and controlled via an institutionalized software logistics system, the fieldings are likely to produce software version confusion, a proliferation of incompatible support equipment, training problems, interoperability problems, threat susceptibility, and a potential risk for degradation of performance.

	Software and Hardware Logistics Differences. Unlike hardware, software logistics is process driven. That is, processes are the basis of software supply and resupply. Processes account for how software is kept in a state of readiness and how it is brought to the battlefield. There can be no stockpiles of software - anywhere. The equivalent of the stockpile is the process of making replacement software. This supply, resupply, and replacement process exists only at the Life Cycle Software Engineering Center (LCSE) responsible for the particular battlefield system's software. Also unlike hardware, a deficiency in one copy of software is likely to appear as the same deficiency in all the same software on the battlefield, in the maintenance units, and in the depots. This fact inval�idates keeping any copies of software stockpiles. It is the process of software support that acts like the stockpile. When software is needed, it is generated by the process at the LCSE and distributed. The distribution may include documentation that consists of user manuals, training material, and technical manual change pages that relate to software updates. Currently, the Army has no software logistics system in place and all updates are processed in a system specific or ad-hoc manner.

�	

	The inability to rapidly change software can be directly related to a loss of life and a loss of mission. For software, there are no software supplies in the depot warehouses, no software stockpiles in theater, no software inventory, no National Stock Numbers (NSNs), and no institutionalized Army wide system. Hardware and software logistics are not the same and are analogous only for purposes of one trying to understand the other.

 Configuration tracking on the battlefield is different for software. The configuration control of software resupply is complicated by volatility. Software can have several versions in the field at the same time for the same battlefield system and did during Desert Storm. Software is also theater and threat dependent and careful management must be exercised to accurately control which versions are released to which units. In the worst case, some battlefield software will be unique to each one of the individual battlefield systems.

 The identification of software must be simple, immediate, and made visually without reference to manuals. The soldier must know exactly what software is in his or her possession by a glance. The consequence of using an incorrect software version can be danger�ous. Any two tapes, disks, or even printed circuit boards (PCBs) can be physically identical, have the same NSN, and yet have different software on them. It is not coincidental that software versions are not identified by NSNs.

	Readiness and Software. Readiness is always a significant consideration of a commander. Software readiness dictates that, when needed, software changes and replace�ments are provided to the user as rapidly and in as timely a response as possible. It also means that the correct software version is provided if replacement of the media is required, as notably happened during Desert Storm. Unfortunately, the Army has no readiness measures for software. If the measures for hardware readiness are considered, they revolve about how ready the hardware systems are for combat. Stockpiles are counted to assure that materiel gets to the places it is needed at the time it is needed. To speed up having the means available for combat, the prepositioning of stockpiles, systems, resources, and personnel is used.

	How does that translate to readiness for software? Following the general requirements of hardware readiness, the software must be delivered to the place and at the time it is needed. Since there can be no stockpiling of software, prepositioning is not possible to shorten the distribution time Hence, the prime variable of software readiness is time. The time for the distribution is the time that must be shortened in software readiness. Software readiness is largely measured in time: the time it takes to order, receive, and install the changed software.

	This requires that measures of software readiness be implemented. These measures should show the readiness of the team that makes the new battlefield software. Measures that account for the elements of software logistics being in place, funded, trained, familiar with the mission requirements, and equipped. Still another software required readiness measure is the means of replication, distribution, installation, and training (RDIT) for the new versions of software. This also suggests that software readiness requires the means of reporting, documentation, identification, and tracking be in place for software and its necessary support to be ready for combat.

	All these measures get rolled up into another meas�ure of software readiness is summarized in the following clas�sification system: Green represents the software readiness for the battlefield system is completely ready (READY); Amber denotes the system being able to perform most of its intended function but problems still remain (MARGINALLY READY); Red signifies the system is not ready to perform its intended function. (NOT READY). However, the bottom line of readiness remains how quickly the software can be brought to the soldier in the field. That is where all the readiness measures get rolled up into the one that counts.

	In practice, software logistics is logically divided into two parts. The sustainment part, which changes the code and "brings it to the loading dock" for distribution to the fielded battlefield systems; and, the Replication, Distribution, Installation, and Training (RDIT) part, which repli�cates, distributes, installs, and trains, or in effect, "takes it from the loading dock" and gets it to the fielded systems and the soldiers that need it.

	Currently, many software logistics functions that are part of readiness are performed in an ad�hoc manner which results in each system having personal�ized service that is not institutionalized, not standardized, not documented by any set of Army standards, not addressed in regulations, and subject to the interpretations of individual system managers. The readiness of a system is impacted by both the Battlefield Automated System (BAS) hard�ware and software which are mission critical. 	The impact of hardware on readiness is defined, recognized, and institutional�ized in the Army. But the impact of software on readiness is only now being recognized for its impact. An impact felt in Desert Storm. Software support includes the following functions: replicating tested software changes; updating and distributing software documentation; coor�dinating shipments of software version releases; scheduling delta training of BAS users, Logistics Area Representative (LARs), and CECOM SED field office person�nel; scheduling installation of software changes; recovery of software media; and providing replacements of failed media. Therefore, RDIT is the software fielding support part of the software logistics cycle. 	

	Mobilization and Readiness. When mobilization occurs, battlefield systems are moved and brought to the point where they are needed. For any one battlefield system, different versions of software may be authorized for different theaters; additional versions may be allowed for particular exercises; and at any one time there will likely be at least one update of some particular system's software being started on any given day. Considering that a software update can take months to complete, the near future is likely to witness many different fielded systems being updated at any one time. Intensive management will be required to avoid confusion during mobilization. While peace time may limit some updating activity, necessity may dic�tate a groundswell of required changes to battlefield systems' software, as happened in Desert Storm where many changes to software were performed.

	Threat sensitive systems must be checked during mobilization to ensure that their software is correct for that theater. If it is not, then it must be changed quickly. The rapid response to this requirement must be part of an institutionalized system that is missioned to prepare these systems for the threats that they are expected to encounter. Done properly, the pilots, tank crews, air defenders, and other threat endangered personnel can perform their mission with a higher degree of safety. Done improperly, or not at all, the result can be lost lives and unaccomplished missions. Software logistics is the backbone of having software changes performed correctly. The equipment, personnel, procedures, knowledge, and training that are used to perform the software logistics mission must be ready to perform and in place at any time.

	The System Life Cycle and Software. Once a battlefield system is produced and fielded, software begins a life cycle all its own, being released periodically through a Software Material Release Process as shown in Figure 2. Knowing that there are many software fieldings during the life of the system, the design of the battlefield should consider this fact as a means of reducing costs. The fact that the Army does not have standards that guide some fundamental points of design raises the likelihood that high costs and inade�quate readiness may be unintentionally introduced into the sys�tems support. For example, some media are more expensive and difficult to maintain over the life cycle and should be replaced by less expensive media at design time. Ultraviolet Erasable Programmable Read Only Memory (UVEPROM) devices require that ultraviolet light be used to erase the firmware before reprogramming in the field. Selecting UVEPROMs would thus cost more to use over the life of the battlefield system than would Electrically Erasable Programmable Read Only Memory (EEPROM) devices which do not require using ultraviolet light before programming. Similarly, designing printed circuit boards so that they can be programmed from the card edge makes it easier and faster to update the firmware (saving time and resources). The use of a standard bus, such as the 1553B, and a port that connects it to the outside of the case simplifies the programming of the firmware, decreases costs, decreases the time to program the system, decreases the time that the system is down for reprogramming, and thus increases readiness. Army standards, when incorporated, will standardize design practices to incorporate the more advanced software logistics capabilities and will become a means of gaining a software logistics edge over the adversary while decreasing costs.

	The life cycle of a battlefield system must incor�porate the deliberate plans for the support of software over that life cycle. Standard Statement�of�Work (SOW) clauses, software Integrated Logistics Support Plans (ILSPs), Software Fielding Plans, standard software support equipment (i.e., memory loader verifiers, PCB programmers, floppy disk replicators, high volume tape copiers, Compact Disk/ Read Only Memory {CD/ROM} replicators, etc.), standard software sup�port procedures, Army regulations, and other means of reducing costs, increasing effectiveness, and improving readiness should be a significant part of how business is conducted; it is not; at least not yet.

�

	The Elements Of Software Logistics. Software logistics has many elements that together form the discipline of getting the software written and then getting it to the right place at the right time with the right training and documentation. The elements may vary from battlefield system to battlefield system, depending upon the media (printed circuit boards, floppy disks, tapes, hard disks), their worldwide locations, the degree of change in the software, the coordination that is needed (interoperability, networks), the speed of replacement which is needed (threat susceptible, system software failures) the conditions (peace, mobilization, conflict), and other factors that may impact the need for the software getting to where it is needed. These elements follow.

1. Rapid Distribution. The software logistics capability has a foundation based upon the requirement for rapid distribution of software to the systems on the battlefield. It is a capability that saves lives on the battlefield. There are various means of accomplishing this and they should all remain tools in the toolbox of software logistics and used as mission requirements dictate. The several means of accomplishing the rapid distribution of software are as follows.

	a. Satellite Transfer of Software. This tool is to software as the FAX is to mail. When its needed, as typically occurs during combat, there is no substitute. This tool, which actually lowers software logistics costs while improving performance. In the process of organizing this capability as an institutionalized tool, the CECOM RDEC SED RDIT Group has completed several tests of transferring software to Europe using satellites (reports are available from the author). This means of transferring software provides a rapid response capability that can add to the capabilities of the systems on the battlefield by providing revised software rapidly.

	b. Telephone Transfer of Software. The rapid transfer of software includes the use of the telephone. While not suitable for large transfers of software, it has an important place in the responsive transport of software to the battlefield. Classified software can also be transferred with the use of suitable encryption devices and STU-III telephones. As fiber optics become more prevalent in telephone communication, the abilities of distributing software by this means will improve to the point where it will be an acceptable means of distributing large quantities of software.

	

	c. Tactical Systems Transfer of Software. Transporting software over tactical systems is a means that needs to be explored for its possible role in transporting software on the battlefield. The means of converting the software to the form needed and the media which is acceptable for a particular system must also be present for this means of transferring software. If the software is to be housed on a floppy disk, tape, CD/ROM, hard disk, or other media, then the equipment, personnel, tracking system, and quality control that accomplishes that function must be available.

	d. Courier Transfer of Software. Employing a courier to transport software is always an option and an essential one in some cases. Where certain situations exist, it may be the only means available. Catching the next available plane is nothing new but it is still an optional tool in software logistics.

	e. Mobile In-Theater Replication and Distribution Systems. This is a proposed capability which provides "one-stop" RDIT support. This will be one of the cornerstones of software logistics. Consisting of a vehicle mounted van that is equipped to receive satellite, radio, and other transmissions, together with the replication equipment needed to place the newly released or resupplied software onto the appropriate media, the mobile replicator is essential in replacing the current ad-hoc means of getting software to those that need it. It is a fully equipped facility with inherent communications capability to receive instructions and software data. The use of this approach will be a giant leap forward in bringing software logistics to the level of excellence it requires to support the modern battlefield.

2. Identification. In many cases, time does not permit the change of NSNs, even if it were desirable to do so. But in all cases, using NSNs presents the risk of confusion, delay, and the risk of not knowing what soft�ware version is being used. For example, firmware (which is software housed on a semiconductor device � usually on a printed circuit board) updates in the field never have the printed cir�cuit board's (PCBs) NSN changed with the change of the firmware. The NSNs that are etched on the many millions of PCBs in the field are virtually impossible to change once they are in the field and being used. Even if the NSN could be changed, it is not visually identifiable by anyone needing to know what ver�sion is being examined and hence the firmware would not be readi�ly identifiable anyway.

3. Battlefield System Design For RDIT. On a personal note, while standing in front of a captured Russian tank, one of the U.S. Army engineers anecdotally stated that the entire engine has to be pulled from the tank to perform even simple maintenance. Clearly this was a logistics and maintenance problem that was designed into the system, probably not on purpose by the Russians. This design flaw degraded performance on the battlefield in that the system was not as ready as it could be if a better maintenance access were designed into the tank. Hopefully, all adversaries will continue such design practices, but we should not.

	With software, as with hardware, the design of the battlefield system is intended to satisfy many requirements that accomplish a mission. The design should consciously incorporate the need for rapid, cost effective, and timely updating of software and firmware over the life cycle of the battlefield system, on or off the battlefield, especially during conflict. Examples of design features which enhance mission performance, cost effec�tiveness, and increase the timeliness of software and firmware logistics support are: use of standard bus and ports for update of firmware; use of economical media (CD/ROMs, floppy disks) that enhances perform�ance and reduces costs; and, use of standard off-the-shelf reprogramming equipment.

 Any system which uses mission firmware should have a means of rapidly updating firmware designed into it. The design for this rapid update capability is likely to cost little to nothing more than other less effective designs at the time of production and save considerable funds during the life of the system. The firmware should be on PCBs that allow programming from the card edge; be electronically erasable, as with EEPROMs; and, be connected to a standard 1553 bus connected to a standard port which allows for rapid update. A firmware update with this design feature greatly reduces the time the system is out of service (possibly from days or hours to mere minutes), thus, minimizing the time the system is not available for use on the battlefield. Where threat tables, algorithms, or mission firmware are being updated, this reduction in time and enhancement in performance can mean the difference between success or failure on the battlefield.

4. Resupply Of Software and Firmware. The resupply of software is the provisioning of replacement software. If the media fails, the software on it is lost and must be replaced. Resupply does not take place due to failures in the software. When that happens, a new version release takes place.

	The software logistics of resupply involves constant tracking of software and firmware to ascertain which units have which version of software. When multiple versions of software are placed in the field, as in peacetime, and during Desert Storm, even greater care must be taken to insure that the correct software is released to the correct units. This requirement places a severe burden on the tracking system used to manage software versions on the battlefield. It also places great importance on the rapid response that is required to keep any one system operational should there be a need for replacement software.

	 If battlefield systems are interoperating, then the release of one system may possibly require that a synchronized compatible release be made to the interoperating systems, even though there are no errors in those systems. In many cases, this coordinated release is done routinely and is mandatory. Hardware interopera�bility is the exception, not the rule as with many systems soft�ware.

5. Delta Training. Delta training is training in the field and for instructors and key personnel at schools which is sometimes necessary with new software releases. In general, software can not be released without careful review of each resupply to the degree that only the software release authority (in�practice the software support facility is usually the acting surrogate) can authorize which version is to be issued to any particular unit for a particular battlefield system. Training is often required for software releases and, in those cases, must be conducted in coordination with the software release (while most releases may be planned and scheduled, some are often made in response to requirements during emergencies and may have to be performed immediately, not by a planned schedule). The releases planned for one year from now can be unexpectedly released much earlier, or even later, in response to requirements. Emergencies may require unplanned releases.

	To effect this objective, replacement software resupply procedures must be easily understood and delta training must be expeditiously managed. Resources must be available for continuous operations to include replica�tion equipment and facilities, personnel, media, and necessary funds. Software changes as they affect readiness, include all of the time necessary to install the new version and to conduct the training on the changes.

6. Logistics Documentation. The present means of preparing for logistical support entails documents that start at the beginning of the life cycle of the battlefield system. The Integrated Logistics Support Plan (ILSP) is used for hardware and needs to be expanded to include the provisions for software logistics and support. Another important document, not widely used, is the Software Fielding Plan which addresses for each system the equipment, personnel, facilities, procedures, timing, coordination, training, identification, and other logistics, mission, and support issues which are vital to outperforming the adversary on the battlefield. These documents are significant in that they are the tools which provide for a high degree of readiness that comes from advanced planning. These documents are discussed in the following sections.

	

	a. Software Integrated Logistics Support Plan (ILSPs). Today's ILSPs do not emphasize software support. They should include a complete description of how software will be supported (CECOM RDEC SED has a software ILSP model that is available by calling the author). This includes a description of: Equipment required to support the battlefield systems software and firmware, such as PROM burners, Printed Circuit Board (PCB) Programmers, Memory Loader Verifiers (MLVs) used for loading firmware through a port in the system; specific numbers and types of personnel required to support the software and firmware support and the fielding of the software to the systems located in�theater; the costs invoked with the periodic updates of the software and firmware wherever they may be located (Depot, in�theater, globally); Equipment maintenance responsibilities; how the identification and labeling of the software is to be performed; tracking the software and firmware distributions through the Unit Identification Code and Unit Addresses; the types of media that are to be used for trans�porting the software and firmware to and from the fielded battle�field systems; the engineering validation procedures that insure accurate copying of master software and firmware versions that are being replicated for use by the fielded battlefield systems; the impact security upon the software and firmware support proc�esses, including software maintenance, replication, distribution, installation, and training; identification of risks potentially impacting technical performance, schedule, and costs which are directly related software and firmware support.

	b. Software Fielding Plans (SFPs). A plan should be written which describes the procedures, equipment types and quantities, numbers and types of personnel, all costs involved with the software fielding, time and schedules data, all training (users and fielders), frequency of fielding, software media quantities (for example, numbers of floppy disks, numbers of CD�ROMs, numbers of PCBs). Once this plan is completed, it will serve as the planning and procedures manual for all aspects of getting the software to the field. In effect, it is a "users guide" for the fielding of software. This plan can be made an appendix in the Computer Resource Life Cycle Management Plan (CRLCMP) or a separate stand alone plan depending upon how the particular support contract is written (a model software fielding plan is available from the author). Either way, it is a valuable tool for the software logistics support of any one particular system.

	c. Computer Resource Life Cycle Management Plans (CRLCMPs). The CRLCMP can be used to manage the equipment needed for meeting software logistics requirements for a system. As with the other computer resources that are involved with the support of the system's mission, support equipment can be inserted into the ILSP for an organized approach to managing the computer resources involved in software logistics.

	d. Battlefield Systems User Manuals (BSUMs). The software users manuals that are made for the operators of the battlefield systems should contain specific software logistics information. The operator should have an emergency telephone number for emergency resupply, a software reorder form, and a registration card for letting the software support staff at the LCSE know more about that user. The CECOM SED RDIT Group uses this approach for the battlefield systems support.

	e. Technical Manuals (TMs). Technical Manuals should have the appropriate pages changed whenever the software version is changed. Camera ready change pages should be sent out with each software release.

	f. Software Support Transition Plans. Software support transition plans are essential for the orderly planning of how that support will be moved from one location to another. For example, from the prime contractor to the Government. A transition plan needs to be written to plan for the orderly movement and establishment of a software support facility and should address the equipment, facilities, staffing, and training (this includes the training of support contractors that may be providing services for the Government). Typically, the prime contractor writes the transition plan when directed by the Government. The plan is then reviewed and approved by the Government. The plan specifies the length of time for the transition to be completed, the list of equipment that is to be transitioned (including tools, fielding equipment, programming equipment and test equipment), the estimated dates of the transi�tion, the destination of the equipment, the cost of the transi�tion, and any details that pertain to that particular system.

7. Standardized off-the-shelf Software Logistics Support Equipment. Software comes on many forms of media. As mentioned previously, the media may be floppy disks, tapes, CD/ROMs, hard disks, printed circuit boards and any other media form that will be used to transport and store software. Each of these media necessitate support equipment for programming it. This equipment, if not standardized across organizations, can pose significant operational, cost, training, maintenance, and procurement problems. The following types of equipment show that software logistics, in part, depends upon the ability to replicate the needed quantities of software and then get it to where it is needed.

	a. PROM Programmers. Programmable Read-Only Memories (PROMs) are typically used to hold software on circuit card assemblies (CCAs). When the PROM is socketed so that it can be removed from the CCA, it is easily replaced with a new programmed PROM when a new version of software is released. The software logistics of replacing firmware can be deceiving. It is not typically easy nor inexpensive. As an example, one system required twenty minutes to change the PROMs in a laboratory environment. Updating that system in the field took about one day. Depending upon where the systems are located, their number, security requirements, and the timing of the update, the cost to update about three hundred systems can be very expensive. If software logistics is considered in the design of the system, then the costs can be reduced. However, the logistics of going to the field and exchanging the PROMs will still be a large part of the time and cost of each update.

	b. Printed Circuit Board (PCB) Programmers. When printed circuit cards (PCBs), also called CCAs as above, need to have their software updated, special equipment is needed for the reprogramming. This equipment is called a PCB programmer or some call it a memory loader verifier (MLV). The PCB programmer should be standardized, off-the-shelf, commercially available, and able to program almost any system in the inventory. The logistics of getting to and from each of the systems that are to be programmed (including those in the maintenance units and the depots) is time consuming and costly.

	c. Memory Loader Verifiers (MLVs or Box Programmers). When the system to be programmed has a bus and a port for accessing the firmware (i.e., PROMs), then a MLV can be connected to the port and the software downloaded. This saves the time of opening the box, taking the PCBs out, reprogramming them, reinserting the PCBs, then testing the entire box to verify that no damage was done during the reprogramming process. The MLV, which comes in various shapes, sizes, costs and capabilities, should be standardized and commercially available off-the-shelf equipment.

	d. CD-ROM Replicators. If media other than firmware is to be used for proc�essing, such as hard disks, then the media that will be used to transport software to the hard disks could be one of several types, depending on the volume of data to be transported. CD�ROMs should be considered. The logistics advantage that CD-ROMs offer is that they can hold large amounts of software (about 600 megabytes). If this media is to be used, then the system's design must include a CD-ROM reader. When map data is to be used by the system, then this approach is almost a must to decrease logistics costs and time.

	e. Floppy Disk Replicators. Floppy disk replicators are typically not portable. They normally are located at the LCSE and are capable of copying hundreds of floppy disks per hour, in any format (MS-DOS, Macintosh, Unix, high or low density, etc.). This is an essential software logistics tool and acts as the stockpile that is needed for new version releases.

	f. Magnetic Tape Replicators. Different magnetic tapes require different replicators. They come in all throughput capabilities and are essential for replicating the number of copies of the software needed in the time allowed. This software logistics tool is vital and metaphorically acts like a stockpile of tapes when new versions of software are to be provided to the field. The throughput capability determines how many days or weeks are needed to make the necessary number of tapes for the systems in the field. The greater the throughput of the replicator, the faster the tapes are made and in an analogous sense, the "closer" the software stockpile to the systems needing them.

8. Coordination and Version Change Window. The amount of time that is allowed to completely update all the systems on the battlefield with the new version during a release is called the Version Change Window. If coordination with other interoperating systems are necessary, then a coordination window exists also. It is the time span that is allowed to update the systems in a network or within the family of interoperating battlefield systems. If a network is being upgraded with replacement software, then care must be taken to coordinate the change to avoid degrading or obstructing the mission capabilities. It was reported that Patriot had three changes to the software during its use in Desert Storm. The Intelligence and Electronics Warfare (IEW) systems had over thirty changes during Desert Storm. Not recognizing the volatile nature of software and not changing software can directly translate to a loss of life on the battlefield.

	Conclusions. Software logistics requirements are emerging as an awaking giant. Currently performed in the ad-hoc mode, if software logistics is not institutionalized in the Army, then logistics and support costs will continue to increase, mission performance will continue to depend upon non-standard ad-hoc equipment and processes, software readiness (hence system readiness) will erode, tracking of software will degrade and possibly cause confusion about version control. Planning will definitely suffer.

	 This logistics giant is visible in the form of many dedicated individ�uals working independently across the Army and across the country, much like fingers without a hand to connect them. It is visible in the costs that are higher than they would be if they were orchestrated through a common set of Army wide standards and procedures. It is visible with expensive and scarce developmental software engineers carrying suitcases on planes to update firmware across the globe to do a software logisticians job. It is visible with ten different battlefield systems having ten differ�ent ways to solve the same software logistics problem and no standard approach in sight. It is visible in the desks, personal computers, pocket reminders, and notebooks that are used to keep track of what software version is being shipped to whom and when. It is plainly visible by the growing concerns at many meetings about what to do with getting software from the programmers to the systems in the field.

	

	The Army is planning for the twenty-first century, which is only a few years away. The plans to have the most advanced fighting force in the world should include the plans for the most advanced software logistics system in the world. Software logistics is the hand that ties all the ad-hoc fingers together for an effective punch. Fighting capability and the means to support its software are like the hand and glove on the battlefield. Institutionalized, standardized, and organized software logistics is the support that forms the foundation for software driven systems on the battlefield. The giant is emerging and the time to prepare for his arrival is now.

�page �
12
�

