
Department of Computer Science
Tufts University

Software Maintenance
As Part of the Software Life Cycle

Comp180: Software Engineering

Prof. Stafford

Prepared by:
Kagan Erdil
Emily Finn
Kevin Keating
Jay Meattle
Sunyoung Park
Deborah Yoon

December 16, 2003

2

TABLE OF CONTENTS

SOFTWARE MAINTENANCE AS PART OF THE SOFTWARE LIFE CYCLE 4
1. INTRODUCTION .. 4
2. DESCRIPTION OF THE NATURE OF THE PHASE... 5

2.1 FOUR TYPES OF SOFTWARE MAINTENANCE .. 5
2.2 THE SIGNIFICANCE OF SOFTWARE MAINTENANCE .. 7
2.3 SOFTWARE CHARACTERISTICS THAT AFFECT SOFTWARE MAINTENANCE EFFORT................................. 8
2.4 SOFTWARE MAINTENANCE FROM A SERVICE PERSPECTIVE... 9
2.5 SUMMARY OF THE NATURE OF THE MAINTENANCE PHASE ... 10

3. PROCESS... 10
3.1 TRADITIONAL PROCESS MODELS ... 11
3.2 MAINTENANCE PROCESS MODELS ... 11
3.3 PROGRAM UNDERSTANDING.. 13
3.4 REVERSE ENGINEERING... 13
3.5 REUSE AND REUSABILITY.. 14
3.6 MANAGEMENT AND ORGANIZATIONAL ISSUES.. 14
3.7 SUMMARY OF PROCESSES.. 15

4. TASKS... 15
4.1 SUMMARY OF TASKS ... 16

5. TOOLS .. 16
5.1 COMMERCIALLY AVAILABLE PRODUCTS ... 18
5.2 SUMMARY OF TOOLS ... 18

6. ROLE OF SOFTWARE MAINTENANCE IN DEVELOPMENT METHODS 18
6.1 INTRODUCTION ... 18
6.2 ITERATIVE DEVELOPMENT... 19

6.2.1 Rational Unified Process .. 20
6.2.2 Scrum .. 21
6.2.3 Case Study: Holland Railconsult (Switching to RUP) .. 21
6.2.4 Case Study: Micron’s Facilties IS Team (Switching to RUP)... 22
6.2.5 Agile development ... 22
6.2.5.1 What is Agile development? .. 23
6.2.5.2 When should you implement XP?.. 25
6.2.5.3 Success factors .. 25
6.2.5.4 Limitations .. 25
6.2.5.5 Effect on Maintenance stage ... 26
6.2.5.6 Case Study: IONA Technology (Applying XP to Maintenance) .. 26
6.2.6 Summary of Iterative development... 27

6.3 COMPONENT BASED SOFTWARE DEVELOPMENT AND MAINTENANCE .. 28
6.3.1 What is CBSD? .. 28
6.3.2 What kind of roles the maintenance plays in CBSD?... 29
6.3.2.1 The role of maintainers in CBSD .. 29
6.3.2.2 Major maintenance activities in CBSD... 29
6.3.3 Advantages and disadvantages of CBSD in maintenance.. 30
6.3.4 Summary of CBSD ... 32

6.4 OPEN SOURCE.. 32
6.4.1 Differences with traditional project maintenance.. 33
6.4.1.1 Release date .. 33
6.4.1.2 Expectation of service ... 33

3

6.4.2 Advantages of the open source method .. 34
6.4.3 Mozilla ... 35
6.4.4 Summary of open source development ... 36

6.5 SUMMARY OF THE ROLE OF MAINTENANCE IN DEVELOPMENT METHODS .. 36
7. CONCLUSION.. 37
ACKNOWLEDGMENTS.. 38
REFERENCES ... 38
APPENDIX A: SOFTWARE MAINTENANCE COST IN SOFTWARE DEVELOPMENT............ 42
APPENDIX B: BONSAI .. 43
APPENDIX C: TINDERBOX ... 44
APPENDIX D: BUGZILLA .. 45
APPENDIX E: REQUIREMENT MANAGER IN TESTDIRECTOR ... 46
APPENDIX F: TEST PLAN TREE IN TESTDIRECTOR.. 47
APPENDIX G: CUSTOMIZABLE ACTION-DRIVEN WORKFLOW... 48
APPENDIX H: DEFINE CUSTOM VIEWS ... 49

TABLE OF FIGURES
FIG. 1. THE QUICK FIX MODEL (TAKANG AND GRUBB [1996])... 12

FIG. 2. THE REUSE MODEL (TAKANG AND GRUBB [1996])... 13

FIG. 3. THE ITERATIVE CYCLE .. 20

FIG. 4. THE COST OF CHANGE RISING EXPONENTIALLY OVER TIME (BECK [1999]) 24

FIG. 5 XP, SCRUM, CRYSTAL, FDD, DSDM, ASD, PP, ISD, AM ARE ALL EXAMPLES OF
AGILE METHODOLOGIES.. 25

FIG. 6. AGILE PROCESSES FOLLOWED IN STAGES PRIOR TO MAINTENANCE.................. 26

4

SOFTWARE MAINTENANCE AS PART OF THE SOFTWARE LIFE CYCLE

KAGAN ERDIL

Tufts University

EMILY FINN

Tufts University

KEVIN KEATING

Tufts University

JAY MEATTLE

Tufts University

SUNYOUNG PARK

Tufts University

and

DEBORAH YOON

Tufts University

Maintenance plays an important role in the life cycle of a software product. It is
estimated that there are more than 100 billion lines of code in production in the world. As
much as 80% of it is unstructured, patched and not well documented. Maintenance can
alleviate these problems. This paper describes the nature of software maintenance, why it
is included in software development and how it’s carried out. It discusses the role of
maintenance played in iterative, agile, component-based and open source development
models.

Categories and Subject Descriptors: D.2.7 [Software Engineering]; Distribution and
Maintenance - corrections
General Terms: Design, Documentation, Management
Additional Key Words and Phrases: Case studies, Software maintenance, Software
evolution, Process, Tasks, Tools, Reverse engineering, Software development, Iterative
development, Agile development, Component-based development, Open source
__

1. INTRODUCTION

Software Development has many phases. These phases include Requirements

Engineering, Architecting, Design, Implementation, Testing, Software Deployment, and

Maintenance. Maintenance is the last stage of the software life cycle. After the product

has been released, the maintenance phase keeps the software up to date with environment

changes and changing user requirements.

 The earlier phases should be done so that the product is easily maintainable. The

design phase should plan the structure in a way that can be easily altered. Similarly, the

5

implementation phase should create code that can be easily read, understood, and

changed. Maintenance can only happen efficiently if the earlier phases are done properly.

There are four major problems that can slow down the maintenance process: unstructured

code, maintenance programmers having insufficient knowledge of the system,

documentation being absent, out of date, or at best insufficient, and software maintenance

having a bad image. The success of the maintenance phase relies on these problems being

fixed earlier in the life cycle.

 Maintenance consists of four parts. Corrective maintenance deals with fixing bugs

in the code. Adaptive maintenance deals with adapting the software to new environments.

Perfective maintenance deals with updating the software according to changes in user

requirements. Finally, preventive maintenance deals with updating documentation and

making the software more maintainable. All changes to the system can be characterized

by these four types of maintenance. Corrective maintenance is ‘traditional maintenance’

while the other types are considered as ‘software evolution.’

 As products age it becomes more difficult to keep them updated with new user

requirements. Maintenance costs developers time, effort, and money. This requires that

the maintenance phase be as efficient as possible. There are several steps in the software

maintenance phase. The first is to try to understand the design that already exists. The

next step of maintenance is reverse engineering in which the design of the product is

reexamined and restructured. The final step is to test and debug the product to make the

new changes work properly.

 This paper will discuss what maintenance is, its role in the software development

process, how it is carried out, and its role in iterative development, agile development,

component-based development, and open source development.

2. DESCRIPTION OF THE NATURE OF THE PHASE

This section will cover what the software maintenance phase is about. As briefly seen in

the introduction, software maintenance is not limited to the correction of latent faults.

The term software maintenance usually refers to changes that must be made to software

after they have been delivered to the customer or user. The definition of software

maintenance by IEEE [1993] is as follows:

The modification of a software product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a modified environment.

 The following subsections will discuss different types of software maintenance, the

significance and the characteristics of software maintenance.

2.1 Four types of software maintenance

6

There are four types of maintenance according to Lientz and Swanson: corrective,

adaptive, perfective, and preventive [1980].

 Corrective maintenance deals with the repair of faults or defects found. A defect can

result from design errors, logic errors and coding errors (Takang and Grubb [1996]).

Design errors occur when, for example, changes made to the software are incorrect,

incomplete, wrongly communicated or the change request is misunderstood. Logic errors

result from invalid tests and conclusions, incorrect implementation of design

specifications, faulty logic flow or incomplete test of data. Coding errors are caused by

incorrect implementation of detailed logic design and incorrect use of the source code

logic. Defects are also caused by data processing errors and system performance errors.

All these errors, sometimes called ‘residual errors’ or ‘bugs’, prevent the software from

conforming to its agreed specification. The need for corrective maintenance is usually

initiated by bug reports drawn up by the end users (Coenen and Bench-Capon [1993]).

Examples of corrective maintenance include correcting a failure to test for all possible

conditions or a failure to process the last record in a file (Martin and McClure [1983]).

 Adaptive maintenance consists of adapting software to changes in the environment,

such as the hardware or the operating system. The term environment in this context refers

to the totality of all conditions and influences which act from outside upon the system, for

example, business rule, government policies, work patterns, software and hardware

operating platforms (Takang and Grubb [1996]). The need for adaptive maintenance can

only be recognized by monitoring the environment (Coenen and Bench-Capon [1993]).

An example of a government policy that can have an effect on a software system is the

proposal to have a ‘single European currency’, the ECU. An acceptance of this change

will require that banks in the various member states, for example, make significant

changes to their software systems to accommodate this currency (Takang and Grubb

[1996]). Other examples are an implementation of a database management system for an

existing application system and an adjustment of two programs to make them use the

same record structures (Martin and McClure [1983]). A case study on the adaptive

maintenance of an Internet application ‘B4Ucall’ is another example (Bergin and Keating

[2003]). B4Ucall is an Internet application that helps compare mobile phone packages

offered by different service providers. In their study on B4Ucall, Bergin and Keating

discuss that adding or removing a complete new service provider to the Internet

application requires adaptive maintenance on the system.

 Perfective maintenance mainly deals with accommodating to new or changed user

requirements. Perfective maintenance concerns functional enhancements to the system

and activities to increase the system’s performance or to enhance its user interface (van

Vliet [2000]). A successful piece of software tends to be subjected to a succession of

7

changes, resulting in an increase in the number of requirements. This is based on the

premise that as the software becomes useful, the users tend to experiment with new cases

beyond the scope for which it was initially developed (Takang and Grubb [1996]).

Examples of perfective maintenance include modifying the payroll program to

incorporate a new union settlement, adding a new report in the sales analysis system,

improving a terminal dialogue to make it more user-friendly, and adding an online HELP

command (Martin and McClure [1983]).

 Preventive maintenance concerns activities aimed at increasing the system’s

maintainability, such as updating documentation, adding comments, and improving the

modular structure of the system (van Vliet [2000]). The long-term effect of corrective,

adaptive and perfective changes increases the system’s complexity (Takang and Grubb

[1996]). As a large program is continuously changed, its complexity, which reflects

deteriorating structure, increases unless work is done to maintain or reduce it. This work

is known as preventive change. The change is usually initiated from within the

maintenance organization with the intention of making programs easier to understand and

hence facilitating future maintenance work (Takang and Grubb [1996]). Examples of

preventive change include restructuring and optimizing code and updating

documentation.

 Among these four types of maintenance, only corrective maintenance is ‘traditional’

maintenance. The other types can be considered software ‘evolution’. The term evolution

has been used since the early 1960s to characterize the growth dynamics of software

(Chapin et al [2001]). Software evolution is now widely used in the software maintenance

community. For example, The Journal of Software Maintenance added the term

‘evolution’ to its title to reflect this transition (Chapin and Cimitile [2001]).

2.2 The significance of software maintenance

As software systems age, it becomes increasingly difficult to keep them ‘up and running’

without maintenance. The following stories show the significance of the software

maintenance phase in the software development life cycle.

 Lost pet fees cost Toronto $700,000

 “... the city [of Toronto] lost out on nearly $700,000 in pet fees [in 2000] because

nearly half of Toronto's dog and cat owners were never billed [due to computerized

billing system failure]. The staff who knew how to run the computerized billing system

was laid off. [...] Only one city employee ever understood the system well enough to

debug it when problems arose. That [employee was also laid off in 2000 due to

downsizing] leaving no one to get things going again when the system ran into trouble

and collapsed.” (Bowker [2001])

8

 UK and Y2K: $50 billion

 “The Associated Press today [April 14, 1997] reports that Robin Guenier, head of

the UK's TaskForce 2000, estimates that Y2K reprogramming efforts will cost Britain

$50 billion dollars, three times the guesstimates of business consultants and computer

service companies. Guenier suggested that 300,000 people may be required to tackle the

problem. Coincidentally, that number is roughly equivalent to the number of full-time

computer professionals in the UK.” (Neumann [1997])

 The first story implies the need of corrective maintenance. It is estimated that there

are more than 100 billion lines of code in production in the world, and as much as 80% of

it is unstructured, patched, and badly documented (van Vliet [2000]). It is necessary to

keep these software systems operational. Errors and design defects in software must be

corrected. Alternatively, the second story is an example of an adaptive change to the Y2K

environment. Systems must also be adapted to changing environments and user

requirement needs.

 In fact, a substantial proportion of the resources expended within the Information

Technology industry goes towards the maintenance of software systems. Annual software

maintenance cost in the United States has been estimated to be more than $70 billion for

ten billion lines of existing code (Sutherland [1995]). At the company level, Nokia Inc.

used about $90 million for preventive Y2K-bug corrections (Koskinen [2003]).

 Many studies were done to investigate the proportional software maintenance cost,

in other words, the cost ratio of new development versus maintenance. The total cost of

system maintenance is estimated to comprise at least 50% of total life cycle costs (van

Vliet [2000]). The proportional maintenance costs range from 49 % for a pharmaceutical

company to 75% for an automobile company in some studies according to Takang and

Grubb [1996]. Zelkowitz et al [1979] also point out that in many large-scale software

systems, only one-fourth to one-third of the entire life cycle costs can be attributed to

software development. Most effort is spent during the operations and maintenance phase

of the software life cycle as shown in Appendix A.

 In their study of 487 data processing organizations, Lientz and Swanson [1980]

reported on the proportion of maintenance effort allocated to each type of maintenance.

Corrective maintenance accounted for slightly more than 20% of the total, on the

average. Adaptive maintenance accounted for slightly less than 25%. Perfective

maintenance accounted for over 50%. In particular, enhancements for users accounted for

42% of the total maintenance effort. Only 5% was spent on preventive maintenance

activities.

2.3 Software characteristics that affect software maintenance effort

9

 In order to increase the maintainability of software, we need to know what

characteristics of a product affect its maintainability. There has been a great deal of

speculation about what makes a software system more difficult to maintain. There are

some program characteristics that are found to affect a product’s maintainability.

According to Martin and McClure [1983], these factors include system size, system age,

number of input/output data items, application type, programming language, and the

degree of structure.

 Larger systems require more maintenance effort than do smaller systems, because

there is a greater learning curve associated with larger systems, and larger systems are

more complex in terms of the variety of functions they perform. Van Vliet [2000] points

out that less maintenance is needed when less code is written. The length of the source

code is the main determinant of total cost during maintenance as well as initial

development. For example, a 10% change in a module of 200 lines of code is more

expensive than a 20% change in a module of 100 lines of code. Older systems require

more maintenance effort than do younger systems, because software systems tend to

grow larger with age, become less organized with changes, and become less

understandable with staff turnover.

 Martin and McClure [1983] also discuss the factors that decrease maintenance

effort. They are 1) Use of structured techniques, 2) Use of modern software, 3) Use of

automated tools, 4) Use of data-base techniques, 5) Good data administration, and 6)

Experienced maintainers.

2.4 Software maintenance from a service perspective

Niessink and van Vliet [2000] proposed software maintenance be seen as providing a

service, whereas software development is concerned with the development of products.

However, this is not yet widely recognized. Within the software maintenance domain, the

focus is still on product aspects. The final phases of software development supposedly

concern the delivery of an operations manual, installing the software, handling change

requests and fixing bugs (van Vliet [2000]).

 A service is defined as an essentially intangible set of benefits or activities that are

sold by one party to another (Niessink and van Vliet [2000]). The main differences

between products and services are as follows (van Vliet [2000]).

1) Services are intangible

2) Services tend to be more heterogeneous than products

3) Services are produced and consumed simultaneously, whereas production and

consumption of products can be separated

4) Services are perishable, products are not.

10

 The difference between products and services are not clear-cut. For example,

babysitting is a ‘relatively’ pure service, while packaged food is a ‘relatively’ pure

product. There is a product-service continuum for software development and

maintenance. For example, adaptive maintenance can be seen as a hybrid of product and

service, whereas corrective maintenance is a product-intensive service, and software

operation is a relatively pure service. A custom software development is a service-

intensive product (Niessink and van Vliet [2000]).

 According to Niessink and van Vliet, customers judge the quality of software

maintenance differently from how they judge the quality of software development. This

implies a need to carry out software maintenance through different processes from those

used by the average software development organization.

2.5 Summary of the nature of the maintenance phase

The traditional view of software maintenance deals with the correction of faults and

errors that are found after the delivery of the product. However, as this section discussed,

other significant changes are made to the product as software evolves. These changes can

happen when the product needs to meet the new environment or new user requirements,

or even to increase the product’s maintainability. Adaptive, perfective, and preventive

maintenance deal with these changes and these three types of maintenance are considered

software ‘evolution’.

 There are a few aspects of software maintenance that set it apart from the other

phases. Software maintenance cost comprises more than half of the total software

development cost. Also, without software maintenance, it is impossible to change the

problems within the product after its release, and many disasters can happen because of

immature software.

 Some characteristics of software that affect software maintenance are system size,

age, and structure. Understanding the characteristics of software will facilitate

maintaining the software more efficiently. It is also important to look at how software

maintenance fits into the relationship between products and services. Software

maintenance, including software operation, has relatively more aspects of a service than a

product, whereas software development yields a product rather than a service.

3. PROCESS

A process model is the representation of the progress or course taken – the model of the

process (Takang and Grubb [1996]). A process model gives and abstract representation of

a way to build software. Looking at the traditional software models help see the

difference between software development and software maintenance and understand the

11

need for maintenance conscious process models.

3.1 Traditional process models

Examples of traditional process models are the code and fix model, the waterfall model

and the spiral models.

The code and fix model is a two-way phase model. The first phase of the model is

writing the code, and the second phase is fixing it. The downfall of this model is that the

code becomes hard to fix over time. In addition, this model does not give any room for

future enhancements. This model is still used because, in real world applications the time

required to identify and fix the problem is usually very limited, which does not spare any

time for analysis and redesign.

The waterfall model gives a high level view of the software life cycle. The waterfall

model is a tried and tested problem solving mechanism. Documentation is an integral part

of the process. This model has various stages where the work of the each stage is “signed

off” before proceeding to the next phase. The problem with this model is that it allows

errors in the specification phase, which is more costly to correct at a later stage.

The spiral model is defined with 4 stages. First the identification of the objectives,

constraints and alternatives is required. Then alternatives are assessed which helps

correctly identifying the risks. The next phase is to develop the product. The final phase

is to plan the next iteration of the spiral, which begins again with the first phase. The goal

here is to identify and assess the high risk items so that they won’t turn into bigger issues

down the line.

3.2 Maintenance process models

Traditional models fail to capture the evolutionary nature of software. Therefore different

models are required that recognizes the requirement to build maintainability into the

system. The five models that are used most in the industry are the quick fix model,

Boehm’s model, Osborne’s model, the iterative enhancement model, and the reuse

oriented model.

The quick fix model is an ad-hoc approach (see Figure 1). Its goal is to identify the

problem and then fix it as quickly as possible. Due to time constraints, the model does not

pay attention to the long-term affects of the fixes. The advantage of this model is that it

gets work done quickly with lower cost. For example, if a system is developed and

maintained by only one person, then that person will know the system well enough to

make changes in a short time without the need to manage detailed documentation.

12

Fig. 1. The quick fix model (Takang and Grubb [1996])

A second model is Boehm’s model. The foundation of Boehm’s model is based on

economic models and principles. The use of economic models helps us to better

understand the problem and improve productivity in maintenance.

Osborne’s model is concerned with the reality of the maintenance environment. In

Osborne’s point of view, technical problems that arise during maintenance are due to

poor communication and control between management. Osborne recommends four

strategies to address these issues.

1) Maintenance requirements need to be included in the change specification.

2) A quality assurance program is required to establish quality assurance

requirements.

3) A metrics needs to be developed in order to verify that the maintenance goals

have been met.

4) Managers need to be provided with feedback through performance reviews

The iterative enhancement model considers that changes made to the system during

the software lifetime make up an iterative process. This model was adapted from

development to maintenance. The model has three stages. First, the system has to be

analyzed. Next, proposed modifications are classified. Finally the changes are

implemented. This model is not effective when the documentation of the system is not

complete, as the model assumes that a full documentation of the system exists.

The reuse oriented model assumes that existing program components could be reused

(see Figure 2). The steps for the reuse model are identifying the parts of the old system

which have the potential for reuse, fully understanding the system parts, modifying the

old system parts according to the new requirements, and integrating the modified parts

into the new system.

13

Fig. 2. The reuse model (Takang and Grubb [1996])

All of these models have their strengths and weaknesses. Therefore, usually more

than one model is necessary for all maintenance activities. The best approach is to

combine the models when required.

3.3 Program understanding

Program understanding means having the knowledge of what the software system does,

how it relates to its environment, identifying where in the system changes are to be

effected and having an in-depth knowledge of how the parts to be corrected or modified

work. (Takang and Grubb [1996]). In order to successfully make changes to the system,

the problem of the domain, effects of the execution, relation of cause-effect, relation of

product-environment and features of decision-support need to be understood.

Every member of the maintenance team needs a comprehensive understanding of the

system. Members of the team consist of managers, analysts, designers, and programmers.

There are strategies that could be used to effectively form a mental model for the

members of the team. These strategies are the top-down model, the bottom-up/chunking

model, and the opportunistic model (Takang and Grubb [1996]).

3.4 Reverse engineering

Reverse engineering is the process of analyzing a subject system to identify the system’s

components and their interrelationships and create representations of the system in

another form or at higher levels of abstraction (Chikofsky and Cross [1990]). Reverse

engineering is required when the process to understand a software system would take a

long time due to incorrect, out of date documentation, complexity of the system and the

insufficient knowledge of the maintainer of the system.

The goals of reverse engineering are to recover lost information, to facilitate

migration between platforms, to improve or provide documentation, to provide

alternative views, to extract reusable components, to cope with complexity, to detect side

effects and to reduce maintenance effort.

14

There are three types of abstraction: function, data and process abstraction. Function

abstraction consists of eliciting functions from the target system. When using an

abstraction process, one finds out information about what the function does. Particularly,

one does not need to know how it operates. Data abstraction focuses on data objects,

while process abstractions focus on the exact order in which the operations were

performed.

3.5 Reuse and reusability

The goals of reuse during maintenance are to increase productivity, increase quality,

facilitate code transportation, reduce maintenance time and effort, and improve

maintainability. The definition of software reuse is as follows: The reapplication of a

variety of kinds of knowledge about one system to another similar system in order to

reduce the effort of development or maintenance of that other system (Biigerstaff et al.

[1989])

Software reuse is derived from the process, the personnel, and the product. The

process is an activity or action performed by a machine or person. A methodology could

be reused on different application problems. Object-oriented design provides a perfect

example of reuse in development. Boehm’s COCOMO model is another example of

process reuse. COCOMO is a model that allows one to estimate the cost, effort and

schedule when planning a new software development activity.

The reuse of personnel consists of reusing the knowledge of the people that have

faced and overcome issues in previous projects and applying this knowledge to the new

projects. An example of this is the “lessons learned” from previous projects. To

maximize the effectiveness, the knowledge acquired needs to be transformed to a

reusable form through domain analysis.

Product reuse consists of reusing the previously created projects. Data, design, and

programs are all products that can be reused. Data formats such as XML could be easily

used between applications. Architectural and detailed design could be used for

redeployment of similar products, which would increase productivity and improve

product quality. Program reuse uses code components such as modules, packages,

procedures, functions and routines. Program components could be easily integrated into a

new software system without a need for adaptation.

3.6 Management and organizational issues

Larger and complex software projects require significant management control. They also

introduce challenges to management as complex software systems are a crucial part of

the organization. Also, the maintenance of large software systems requires a large

15

numbers of employees. Therefore, management needs to find ways to increase

productivity and ensure job satisfaction, which can be achieved by employing the right

people, as well as motivating and training employees. Another factor that affects

maintenance is selecting an appropriate way to organize maintenance tasks. This will

increase productivity, control cost and deliver a quality system to the customer.

3.7 Summary of processes

Traditional life cycle models do not take account of the evolutionary nature of the

software systems; therefore, different models are required for maintainability. Program

understanding is a crucial part of maintenance since over half of the time and effort is

spent on effecting change. Improving the performance on maintenance jobs will lead to

higher productivity and successful evolution of software products. Software reuse also

increases productivity and improves maintainability and quality of the software system

by using the existing software components.

4. TASKS

Maintenance tasks can be grouped into five categories: analysis/ isolation, design,

implementation, testing, and documentation (Basili et al.[1996])

Analysis/isolation tasks consist of impact analysis, cost benefit analysis, and isolation.

Impact analysis and cost benefit analysis consist of analyzing different implementation

alternatives and comparing their effect on schedule, cost, and operation. Isolation refers

to the time spent trying to understand the problem or the proposed enhancements to the

system.

Design consists of redesigning the system based on the understanding of the

necessary changes. It also entails semiformal documentation, like release review

documents.

Implementation entails code and unit testing. Code and unit testing refer to the time

spent coding and testing the changes. It also consists of semiformal documentation, like

the software modification test plan. Unit testing is performed by the maintainer who has

made the changes. Unit testing is usually done locally on the user’s workstation.

Testing consists of integration, acceptance and regression testing. Integration testing

refers to the time spent on the integration of the components, while acceptance testing

entails verifying that the changed system adheres to the user requirements. Acceptance

testing is performed by the end users to ensure that the desired changes have been

implemented successfully. Regression testing refers to the time spent ensuring that the

changes did not affect the functionality of the other parts of the software.

Documentation consists of system, user and other documentation. System

16

documentation refers to the time spent writing or revising the system description

document. User documentation entails writing or revising the user’s guide and other

formal documentation, excluding system documentation. Documentation is very

important since the future changes will rely on the documentation of the previous

changes/modifications.

4.1 Summary of tasks

Maintenance tasks are grouped into 5 categories. Among the maintenance task categories,

code/unit testing takes the most effort of the programmer. A significant time is also spent

on the design activities such as understanding of the necessary changes and semiformal

documentation.

5. TOOLS

A software maintenance tool is an artifact that supports a software maintainer in

performing a task (Takang and Grubb [1996]). The use of tools for software maintenance

simplifies the tasks and increases efficiency and productivity.

There are several criteria for selecting the right tool for the task. These criteria are

capability, features, cost/benefit, platform, programming language, ease of use, openness

of architecture, stability of vendor, and organizational culture.

Capability decides whether the tool is capable of fulfilling the task. Once it has been

decided that a method can benefit from being automated, then the features of the tool

need to be considered for the job.

The tool must be analyzed for the benefits it brings against its cost. The benefit

indicators of a tool are quality, productivity, responsiveness, and cost reduction. The

environment that the tool runs on is called the platform. The language of the source code

is called the programming language. It’s important to select a tool that supports a

language that is an industry standard.

The tool should have a similar feel to the ones that the users are already familiar with.

The tool should have the ability to be integrated with different vendors’ tools. This will

help when a tool will need to run with other tools. The openness of the architecture plays

an important role when the maintenance problem is complex. Therefore, it is not always

sufficient to use only one tool. There may need to be multiple tools running together.

It is also important to consider the vendor’s credibility. The vendor should be capable

of supporting the tool in the future. If the vendor is not stable, the vendor could run out of

business and not be able to support the tool. Another important factor is the culture of the

organization. Every culture has its own work pattern. Therefore, it is important to take

into consideration whether the tool is going to be accepted by the target users.

17

The chosen tools must support program understanding and reverse engineering,

testing, configuration management, and documentation (Takang and Grubb [1996]).

Selecting a tool that promotes understanding is very important in the implementation of

change since a large amount of time is used to study and understand programs.

Tools for reverse engineering also accomplish the same goal. The tools mainly consist

of visualization tools, which assist the programmer in drawing a model of the system.

Examples of program understanding and reverse engineering tools include the program

slicer static analyzer, dynamic analyzer, cross-referencer and dependency analyzer.

(Takang and Grubb [1996]).

Slicing is the mechanical process of marking all the sections of a program text that

may influence the value of a variable at a given point in the program (M. Weiser. [1984]).

Program slicing helps the programmers select and view only the parts of the program that

are affected by the changes. Static analyzer is used in analyzing the different parts if the

program such as modules, procedures, variables, data elements, objects and classes. A

static analyzer allows general viewing of the program text and generates summaries of

contents and usage of selected elements in the program text, such as variables or objects

(Takang and Grubb [1996]).

A dynamic analyzer could be used to analyze the program while it is executing. A

data flow analyzer is a static analysis tool that allows the maintainer to track all possible

data flow and control flow paths in the program (Vanek and Davis [1990]). It allows

analysis of the program to better outline the underlying logic of the program. It also helps

display the relationship between components of the system. A cross-referencer produces

information on the usage of a program. This tool helps the user focus on the parts that are

affected by the change.

A dependency analyzer assists the maintainer to analyze and understand the

interrelationships between entities in a program (Takang and Grubb [1996]). Such a tool

provides capabilities to set up and query the database of the dependencies in a program. It

also provides graphical representations of the dependencies.

Testing is the most time consuming and demanding task in software maintenance.

Therefore, it could benefit the most from tools. A test simulator tool helps the maintainer

to test the effects of the change in a controlled environment before implementing the

change on the actual system. A test case generator produces test data that is used to test

the functionality of the modified system, while a test path generator helps the maintainer

to find all the data flow and control flow paths affected by the changes.

Configuration management benefits from automated tools. Configuration

management and version control tools help store the objects that form the software

system. A source control system is used to keep a history of the files so that versions can

18

be tracked and the programmer can keep track of the file changes.

5.1 Commercially available products

There are numerous products on the market available for software maintenance. One type

of product is bug tracking tools, which play an important role in maintenance. Bugzilla

by the Mozilla Foundation is an example of such a tool (see appendix D). Other bug

tracking products are Test Director by Mercury Interactive (see appendices E and F), Silk

Radar by Segue Software (see appendix G and H), SQA Manager by Rational software,

and QA director by Compuware.

ProTeus III Expert CMMS by Eagle Technology, Inc. is a maintenance software

package that lets users schedule preventative maintenance, generate automatic work

orders, document equipment maintenance history, track assets and inventory, track

personnel, create purchase orders, and generate reports. Microsoft Visual Source Safe is

a source control system tool that is used by configuration management.

Products that are specific to programming languages are CCFinder and JAAT which

is specifically designed for JAVA programs (Kamiya et al [2001]). CCFinder identifies

code clones in JAVA program. JAAT executes alias analysis for JAVA programs. For

C++ programs, there is a tool called OCL query-based debugger which is a tool to debug

C++ programs using queries formulated in the object constraint language, OCL (Hobatr

and Malloy [2001]).

5.2 Summary of tools

The task of software maintenance has become so vital and complex that automated

support is required to do it effectively. The use of tools simplifies tasks, increase

efficiency and productivity. There are numerous tools available on the market for

maintenance.

6. ROLE OF SOFTWARE MAINTENANCE IN DEVELOPMENT METHODS

6.1 Introduction

The earlier development of a software product can have a large impact on the

maintenance of the product. Thus, an examination of maintenance in various

development methods is presented below. The first method, iterative development, is a

method in which each part of the product is created in iterations; for example, an iteration

done for each new feature added to a product. Iterative development is particularly

useful in maintenance because a new iteration can be done for each bug that is fixed and

each feature that is added. This is more efficient than doing all of the maintenance at

once because each added part of the product is fully working before the development

19

team moves onto the next one. This makes it easier to code and debug each part. In

addition, it allows us to have a working product at the end of each iteration.
As projects get bigger, it becomes harder for the customer to define requirements

early on. Agile is a form of iterative development that focuses on adapting to user

requirements throughout the development process. This is accomplished by releasing a

working product at the end of each iteration. Some popular methods of agile

development are Extreme Programming, SCRUM, Crystal, and FDD.

The complexity of software makes their change through maintenance and evolution

inevitable, and this intensifies the problem of coping with their complexity throughout

their long lives. An approach to reduce this complexity to manageable levels is building

systems out of components. Component-Based Software Engineering (CBSE) is based

on the idea of developing software systems by selecting appropriate off-the-shelf

components and then assembling them with a well-defined software architecture. CBSD

has an emphasis in construction of software systems that makes use of reusable

components.

The concept of open source is to release the source code of the product to the public

so that others can modify it to add new features. Technically, open source entails only the

philosophy of allowing end users to view and modify the source code. However, most

open source projects follow similar practices during their development. Some of the best

known examples of open source software are Linux, an operating system, and Mozilla, a

web browser.

6.2 Iterative development

Iterative development is a method of software development in which the process is

broken into small iterations. An iteration is performed for each new feature added to the

product. At the beginning of an iteration, there is a meeting to plan out steps to be taken

during the iteration. During these meetings, the developers and customers discuss user

requirements, plan steps to be taken, and estimate costs. Iterative development

implements just-in-time planning, in which decisions are made as changes occur. The

following figure shows how an iteration works in the maintenance phase (Figure 3).

20

 Fig. 3. The Iterative Cycle

There are multiple methods that use the iterative approach. Two of the most used

methods are Rational Unified Process (RUP) and Scrum.

6.2.1 Rational Unified Process

With RUP, developers aim to fix risks as early as possible. The further they get into the

development process, the more costly it becomes to fix risks. Therefore, it is important to

fix them early. RUP also stresses the importance of documenting user requirements. User

requirements should be referred to through each step of the life cycle. This ensures that

the developers do not lose sight of the goals set in the beginning. Another important idea

in RUP is to create a system that adapts well to change. Then, if a problem arises or the

user requirements change, it will be much easier to accommodate changes. The RUP

method also requires that systems be built with components. Building component based

systems increases reusability and makes it easier to fix bugs. More on component based

systems will be discussed later in the paper. The most important concept in RUP is that

the team works together to make a quality product.

In RUP, earlier iterations are more concerned with requirements, analysis, and design,

while later iterations concentrate on implementation and testing. RUP breaks up the

development process into four phases, in which each phase can have one or more

iterations. The first phase is the inception phase. In this phase, the developers lay out the

user requirements, fix as many risks as possible, and get the stakeholders to approve the

requirements before the beginning of the project. In the second phase, the elaboration

phase, the developers design, implement, and test the architecture. In the third phase, the

21

construction phase, the product goes from the architectural stage to the first working

version. This is the phase where most of the implementation gets done. In the final phase,

the transition phase, the developers make sure that the product fulfills the user

requirements and test it for release.

Because RUP creates systems that adapt well to change, it makes the maintenance

phase easier. It is much easier to add new features to a system that adapts well to

changes. The component based nature of RUP allows the system to be debugged and

changed in parts.

6.2.2 Scrum

Another important form of iterative development is Scrum. Scrum is used mostly for

maintenance on existing systems. In this method, an iteration is performed for each new

feature added to the system, and at the end of each iteration, there is a working form of

the product. Scrum’s main idea that sets it apart from the other methods is its daily

meetings. In Scrum, the team gathers every day for a meeting and asks three questions:

“What did we accomplish yesterday?”, “Were there any obstacles?”, and “What will we

accomplish today?” During these meetings, the team discusses what has been done and

what to do next. There are four phases in the Scrum method: planning, architecture,

development sprints, and closure. In the planning phase, the developers define the

changes to be made, plan the schedule, and estimate costs. In the architecture phase, they

plan how the changes will be implemented. The development sprints consist of

developing the new functionality. Finally, during the closure phase, the developers plan

for release.

Scrum is a good method to use for maintenance, because a new iteration can be done

for each bug fixed or new feature added. The developers can go through the four stages to

plan and execute the iteration. The daily meetings ensure that adequate progress is made

throughout the iteration.

6.2.3 Case Study: Holland Railconsult (Switching to RUP)

Of these three methods of iterative development, RUP is possibly the most well-known

method of software development. There exist a couple of success stories about companies

that switched to RUP. One interesting success story is that of Holland Railconsult. This

company used to use the waterfall model to create products, but switched over to RUP.

When using the waterfall model, they had no documentation on how the system worked.

Therefore, anyone who created a tool for the system had to maintain and answer any

questions about it. Holland Railconsult wanted to change the system so they could have a

team of developers and a team of maintainers. Another problem with their old system

22

was that when changing the software, they went straight to the code without planning or

designing the changes.

After switching over to RUP, Holland Railconsult experienced many improvements

in their methods and products. One of the greatest advantages of using an iterative

method, was that they validated the product with the customer during the development

process instead of just at the end. This made it easier to ensure that the final product was

much closer to what the customer wanted. This also saved the company time and money

that would have been spent after the product was done to make it fit the user

requirements. Another advantage was that when they made changes to the system, they

changed the models in addition to the code. This ensured that the models were consistent

with the existing code. The iterative nature of the method made it much easier to add

someone to the group, because there was plenty of documentation to train the person. In

addition, the person could learn about the system by going through one iteration. This

also saved the company time and money that they would have spent training the person.

RUP also allowed for better communication between developers and better

communication between the stakeholders and customers. Overall, RUP saved time,

reduced cost, increased productivity, increased flexibility, and increased quality (Holland

Railconsult [2003]).

6.2.4 Case Study: Micron’s Facilities IS Team (Switching to RUP)

Another company that switched to RUP is Micron’s Facilities IS Team, or FIST. They

used RUP to get to Capability Maturity Model (CMM) level five. RUP provided them

with a common communication method with users, a common documentation style,

consistent business use-case documentation, and consistent analysis design

documentation. FIST used a six week iteration cycle in which they had a deliverable to

the customer every six weeks. In the first week, they analyzed cost and schedule. In the

second week, they worked on the design. In the third and fourth weeks, they developed

the components of the system. In the fifth week, they built and tested the product. In the

sixth week, they deployed the application. After deployment, they prepared for the next

cycle. After switching to RUP, they were left with a system with increased up-time and

maintainability (Micron [2003]).

6.2.5 Agile development

Industry and technology move extremely fast, requirements change at rates that swamp

traditional methods and customers have become increasingly unable to state their needs

upfront while, at the same time, expecting more from their software. These changes in

the software industry led to the development of Agile Methods, a form of iterative

23

development. Agile Methods are a reaction to traditional ways of developing software

and acknowledge the need for an alternative to documentation driven, heavyweight

software development processes. For the most part Agile processes are nothing new.

The core values of Agile methodologies is what make it different from the rest (Cohen, et

al. [2003]). This section discusses the core values and focus of Agile development, its

success factors and limitations and when to deploy Agile development practices.

6.2.5.1 What is Agile development?

Agile development is a group of iterative software development methodologies that

includes Extreme Programming or XP for short, Scrum, Standard & Poor’s, Feature

Driven Development, Crystal, and Adaptive Software Development. All Agile

development methodologies share the following ideas (The Agile Manifesto):

• Individuals and interactions are valued over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

While Agile techniques vary in practices and process, they share common

characteristics, which include development in small iterations, focus on interaction,

communication, and the reduction of resource intensive processes. It is a software

development paradigm that allows for tight collaboration between teams, intense

customer involvement, and immediate feedback. Highest priority is given to satisfying

the customer though early and continuous delivery of valuable working software.

Embracing change is the cornerstone of Agile development. It recognizes that over

the course of the software development life cycle, change will occur as a natural part of

the process. These changes will be in response to changes within the business itself,

changes external to the business such as market changes, and new ideas and information

that is discovered along the way. Being able to adapt to change more efficiently reduces

the overall cost of change and of the project; in other words, flattening the cost of change

over time curve in the following figure.

24

 Fig. 4. The cost of change rising exponentially over time (Beck [1999])

Developing in iterations makes Agile processes adaptive – changing requirements are

welcomed even in late development stages especially if they can enhance the customer’s

competitive advantage. Well-planned iterative projects start from the expectation that

people (developers, users, other stakeholders) are not very good at figuring out how they

will actually use the product, estimating costs, prioritizing features, or anticipating the

problems they will encounter during development. The methodology is designed to help

manage the risks associated with errors and omissions in assumptions and estimates.

Consensus is built around a broad vision for the product rather than pretending to build

consensus around the details. Each development iteration results in the creation of usable

software for the customer that essentially is replaced every few weeks. The software is

then used and tested by the customer who then provides direct feedback to the

developers. This process might lead to feature additions and other changes in

requirements.

After each iteration, stakeholders add, remove, and re-prioritize features. For re-

prioritization to be successful there has to be high levels of face-to-face interaction

between the stakeholders to ensure clear communication, feedback, and progress. High

levels of interaction provide the stakeholders with an avenue for expressing ideas,

thoughts, understanding, and innovation. Everyone involved with the development

process is expected to maintain a constant pace indefinitely. Continuous attention is

placed on technical excellence since good design enhances agility. Simplicity is valued

as it keeps the team from getting bogged down and over-complicating the application

over iterations. If the method is light and simple, modifications are easier. Projects are

built around motivated individuals who need to be placed in an environment that supports

their every need. Best architectures, requirements and designs emerge from self-

25

organizing teams.

Processes and behaviors within the organization are scrutinized at regular intervals

and improvements are undertaken in order to become more effective and time efficient.

Progress is measured in terms of delivery of working software.

 XP Scrum Crystal FDD
Team Size 2 - 10 1 - 7 Variable Variable
Iteration Length 2 weeks 4 weeks < 4 months < 2 weeks

Fig. 5 XP, Scrum, Crystal, FDD, DSDM, ASD, PP, ISD, AM are all examples of Agile
methodologies.

6.2.5.2 When should you implement XP?

Extreme Programming is ideal when:

• The current software development process does not accept change.

• Requirements are nonexistent or change constantly.

• The current software development process takes too long.

• The software development team contains a mix of senior and junior level

developers.

• It is difficult to produce quality software.

• Project stakeholders want to see interim releases.

6.2.5.3 Success factors

XP leads to increased control on the project because of high levels of interaction and

straightforwardness of processes. It reduces time-to-market of products which increases

competitive advantage for the customer as well as the developers, as time equals money.

Small iterations result in reduced rework and scrap which lowers development and

manufacturing costs which in turn maximizes the companies return on investment and

probability of project success. Improved risk management enhances the ability of the

project to adapt to change by minimizing the cost of change, also lowering the total cost

of a project.

6.2.5.4 Limitations

Agile practices work if performance requirements are made explicit early, and if proper

levels of testing can be planned for. Because of the nature of its process it does not work

for systems that have criticality, reliability, and safety requirements. It best fits

applications that can be built bare bones very quickly, especially applications that spend

most of their lifetime in maintenance. Extensive documentation is not encouraged which

makes later stages in the software development cycle such as maintenance harder to

implement. Reduction in formal communication could lead teams to discount system

26

requirements.

6.2.5.5 Effect on Maintenance stage

Since Agile development considers setting up tools such as comprehensive

documentation to be a secondary objective, subsequent stages in the software’s life cycle,

such as maintenance, are harder to implement. However, the best way to go about the

actual maintenance stage is likely the Agile programming method because of its very

nature. It keeps things simple, focuses on delivering working software quickly and

welcomes and responds nimbly to changing requirements (such as fixing newly

discovered bugs quickly). The following figure clearly shows these concepts.

Requirements
Engineering

Software
Architecting Software Design

Implementation Testing and
Debugging Deployment

Maintenance stage is
harder to implement due

to the lack of
comprehensive

documentation, etc

Agile Processes followed in stages prior to Maintenance

The best way to go about the
actual maintenance stage is
probably the Agile method
because of its very nature
stemming from its primary

focus on delivering working
software.

 Fig. 6. Agile processes followed in stages prior to maintenance

XP in a maintenance environment (also known as extreme maintenance) is very

common. According to Kent Beck, “Maintenance is really the normal state of an XP

project. (Cohen, et al. [2003])” The project evolves over time because of frequent

iterations. The first iteration can be considered the initial release. Therefore, all following

iterations are, by definition, the maintenance stage of the development cycle.

6.2.5.6 Case Study: IONA Technology (Applying XP to Maintenance)

Poole and Huisman examined some of the problems experienced by IONA Technology’s

Orbix Generation 3 maintenance and enhancement team in 2001 and how the adoption of

Extreme Programming further improved the team’s ability to deliver quality support and

enhancements to the products they work on.

As one of the foremost adopters of XP in the world, IONA has used XP to help

27

expand the breadth of best practices in product development, team size, and geographic

distribution. Initially, XP was brought in at the senior level, but quickly gained ground

amongst developers and managers alike. Some issues faced by IONA before the

implementation of XP were:

• Testing. Quality of IONA’s product was never its high point.

• Visibility issues stemming from lack of communication.

• Employee morale was low.

• Personal work practices were an issue.

Management wanted to do more with less: higher productivity, coupled with

increased quality, decreased team size, and improved customer satisfaction. The

engineers wanted more time to do a good job instead of always feeling pressured to

deliver fix after fix. So they started looking at XP and learned that many of its elements

come naturally to teams working the maintenance game (Poole and Huisman [2001]).

On implementing Agile methodologies, productivity improved by more than 67%

(based on the next most productive 5-week period) and the level of interaction,

communication, and morale improved noticeably. A big story board was set up to

prioritize tasks and discuss projects on a daily bases. This improved visibility, giving

others, especially managers, an opportunity to see what people were working on and their

actual progress. The board focused people’s attention on the fact that they were allowing

issues to go unverified for significant amounts of time. There was a dramatic increase in

the number of issues on which people started actively working. It is hypothesized that

visibility alone was a strong motivational factor in this turnaround (Poole and Huisman

[2001]).

IONA’s positive experience with XP practices and the radical improvements it

witnessed in team productivity and quality over a short period of time, demonstrates how

effective Agile software development can be in a maintenance environment.

6.2.6 Summary of Iterative development

As user requirements become more volatile, iterative development becomes more

important. Agile, a form of iterative development, is specifically designed to deal with

changing user requirements. Because of the nature of the maintenance phase, it makes

sense to use an iterative method. Iterative development allows the developers to validate

the product throughout the process instead of at the end. Trying to validate the product at

the end wastes time and money. By following the methods of iterative development,

companies can increase productivity, lower their costs, and deliver better products to the

customers.

28

6.3 Component Based Software Development and Maintenance

Component Based Software Development (CBSD) provides a method of constructing

software systems that makes use of reusable components. CBSD is generally considered

a good way to increase cost efficiency in software development (Szyperski [1997]). It

improves more than just the documentation. It also provides increased reliability of the

software when it is up and running, decreasing pressure on maintenance (Szyperski

[1997]).

6.3.1 What is CBSD?

There are two main elements to CBSD: the component architecture and the component

based development procedure. The architecture acts as a standard foundation for the

reuse of software components, as this reutilization will not be able to take place if

architecture is not standardized (Ning [1996]). The component development process is

then able to use components as a central aspect of software development (Ning [1996]),

and the need for standard software architectures is essential for this reuse.

The main elements of this component architecture are the component framework, the

components, the component contracts, the coordination services, and the glue codes

(Szyperski [1997]). The component framework affords a selection of coordination of

runtime services, which support the component model and enforce the model (Ning

[1996]). The component model is made up of the component types, the interfaces of these

types and the rules of the patterns of interaction which could be allowed between these

component types (Gao et al [2003]).

Some examples of component models are: EJB (Enterprise JavaBeans) from Sun

Microsystems, COM and COM+ from Microsoft and CORBA (Common Object Request

Broker Architecture).

Enterprise JavaBeans (EJB) provides a standard for developing reusable, portable

components in Java. The Java language provides standards for application development.

Java’s promise is that it can be written once and run on any platform. With the Java

language, also comes a standard framework for putting an application together. EJB

provides an interlocking network of components that communicate with one another in a

standardized way. The JavaBeans Component architecture, in theory, will run on any

operating system and within any application environment.

EJB provides standardized software building blocks that interface with other code

components while hiding the internal implementation of their work. In object-oriented

programming, the concept of encapsulation allows each object the ability to encapsulate

its own data and member functions. Each object is a small application that can

effectively work in tandem with other objects, each performing a specific task, and

29

ultimately making up a large application.

A component is a software performance that can take place on either a logical device

or a physical device. The component will execute the imposed interfaces and must satisfy

specific component contracts (Gao et al [2003]).

The component contracts make sure that the components, which are developed

independently, will obey the rules to ensure the interaction of the components in a

predictable manner, so that their deployment and use in both standard build time and

standard run time environments can be assured.

The coordination service is provided by the component framework. Examples of this

may be seen with transaction services (Gao et al [2003]). Glue codes provide a key factor

in CBSD, as they allow the independent components to operate together (Gao et al

[2003]). This is necessary as it would be very unusual to find a situation where there can

be automatic connections between the components. Also, the software that is complied

with the use of components cannot operate without the glue code.

6.3.2 What kind of roles the maintenance plays in CBSD?

6.3.2.1 The role of maintainers in CBSD

The role of maintenance in CBSD is somewhat different from that in other custom-built

systems. According to SEI, maintenance of CBSD differs from maintenance of custom-

built systems in the following ways (Vidger [1999]):

1) System developers do not have access to the source code.

2) Maintenance and evolution of the component is controlled by a third party.

3) Maintenance is done at the component level rather than the source code level.

6.3.2.2 Major maintenance activities in CBSD

The maintenance activities for CBSD are specified as followed by SEI: (Vidger [1999])

1) Gluing and Wrapping : Even though CBSD suggests the concept of building a

system out of components, components are not just “plug-and-play”. Wrappers

around the components should be developed, and “glue codes” that enable the

components to interact together should be implemented so that the system is

coherent. As the system as a whole evolves, those wrappers and glue codes

should be changed in order to accompany the changes.

2) Tailoring: The systems developer has to “tailor” the generic functionality of the

component in order to make it fit into the system’s unique requirements. Even

though the functionalities of the components get changed, these are not done at

the source code level. They are done at the component level, including changes

such as frameworks and scripting. The maintenance of the software system

30

must reflect the modified business process.

3) Fault identification and isolation: Since the maintenance in CBSE is not done at

the source code level, developers can’t change the source code of the component

to fix the problem. The maintainers must identify the component causing the

failure and calculate the next step to fix the problem. For example, get a new

component and replace the old one, or have the component builders who

originally produced the component to fix it.

4) Updating component configuration: Upgrading the component configuration is

crucial in maintaining CBSD. Upgrading of configuration includes:

i) Replacing components with newer versions with added

functionalities as they are released by the component developers.

Since components do not rely on the surrounding system, and the

surroundings of a component have no need to know exactly how it

performs its duties, components can be removed and replaced

seamlessly. For example, if a failure of a system occurs while the

root cause lies in a component, a revised component with patches

in it from the component development company can be delivered

to the maintainers and can be plugged into the system.

ii) Substituting similar components with better functionalities from

different vendors.

iii) Adding or deleting components as the requirements of the system

change.

5) Monitoring and auditing system behavior. Maintainers must be able to monitor

the load, performance, usage, and the failure of each component.

6) Component testing. Before a new component is to be added to a system, the

maintainers have to carefully test the component to determine the behavior of

the component, differences from previous version, etc.

6.3.3 Advantages and disadvantages of CBSD in maintenance

There are both advantages and disadvantages to using this type of system. It is generally

seen as a way of increasing levels of productivity, and also improving on the quality of

software that is developed. However, it should also be remembered that this is still a

relatively new area that is building on the success of object oriented methodology, but

providing increased flexibility.

The advantage is found in the underlying concept; in large system, many parts of the

software are repeated. In development, upgrading and maintaining a large system can

result in increasing costs as the developers must make adjustments, which increases the

31

risk of conflict and clashes. In order to prevent these risks, parts are written only once

and reused several times in the system. Therefore, a shift in design emphasis is seen from

the design of the overall to the composition of the individual components.

However, reuse of the components is complex. A catalogue of the different

components must be kept, and the developers and maintainers must have a good

understanding of the different interfaces and the intricacies of the system. Building a

component for reuse purpose or changing an existing component to make it reusable may

also add additional costs. For example, in the case studied at NASA by Barry Boehm

(Pree [1997]), it was found that a few changes (12%) on a single component increased the

reuse cost by 55% compared to the development of the particular component built from

scratch. This cost is associated not only with the physical changes, but also with the cost

of understanding of requirements of the component (Pree [1997]). In addition, there is

increased risk associated with this type of development. The reused components may

save time, but may also increase the risk of corruption or unreliability due to interactions,

making the maintenance process more difficult.

The existence of self-managed components introduces another advantage of CBSD.

To explain this, an analogy may be made with a car. Inside a car’s engine there is a

combustion engine. This is managed by systems in place designed to control the engine.

Through this system that a car is able to comply with the environmental regulation that

control exhaust from the engine. This control mechanism also has an interface to control

the engine for the user and for the purpose of diagnostics.

Applications that have built-in controls self-manage and lead to a decrease in the level

of input labor on the maintenance side. It would also increase the efficiency of the

system. This is implemented through of agents, which facilitate self-management during

the lifecycle of the application.

The facilitation of the application and deployment occur when the frameworks and

components have built-in control to allow their own installation and modification. The

maintainers can then quietly test and monitor operations, making adjustments where

necessary, undertaking work that would otherwise have been labor intensive, if at all

possible.

This also results in a decrease in the levels of errors and down time as the flaws are

detected early and remedied before they have noticeable manifestations. The system can

give greater information to the administrator, such as notification where a fault is

occurring. This leads to a simplified method of tracing the fault and remedying it.

Remedying any problems in this nature may be simpler and take less time, thus

increasing the efficiency of the maintenance staff.

32

6.3.4 Summary of CBSD

There are many disadvantages to CBSD, which can increase costs and create difficulties.

However, when the system has been developed with the right components and the proper

associated elements, such as the glue code and the architecture, this can be a very

effective way of building and managing software system in the future. This system is

likely to develop and evolve over the coming years.

6.4 Open Source

While development techniques such as those discussed above are solely methods to

create software, open source would be better described as a “philosophy of software.” In

such development, the source code is distributed alongside of, or in place of, compiled

binaries. It is also known as free software; however, this “is a matter of liberty, not price.

To understand the concept, you should think of ‘free’ as in ‘free speech,’ not as in ‘free

beer’” (GNU Project [2003]). Though the terms “open source” and “free software” have

been embraced by different groups and have gained slightly different connotations, this

distinction has minimal impact on the maintenance process. As such, these terms will be

treated synonymously. A summary of the open source process is given by Open Source

Now, a group devoted to spreading open source software: “With open source software,

the source code is open. You can see it, change it, improve it. And it’s protected by a

special license so if anyone else improves it, they can’t redistribute it without the source

code” [2003].

In its strictest definition, open source does not embody any particular approach to

developing software so long as the source code remains available to the end user.

However, in practice, most open source projects follow a similar methodology stemming

from the fact that open source code allows for very different development techniques. It

is important to note that these techniques were created by those writing software without

any commercial backing. For example, the GNU Project was launched in 1984 to

develop a “Unix-like operating system”. This, one of the first major free software efforts,

was started by Richard Stallman while at MIT (GNU Project [2003]). In 1991, Linus

Torvalds began development on what would become the Linux operating system while he

was a student at the University of Helsinki in Finland (Raymond History [1999]). While

these techniques have successfully been applied to commercial development by

corporations such as Netscape, the fact that the techniques were created in a non-

commercial setting affects the entire development cycle, including maintenance.

33

6.4.1 Differences with traditional project maintenance

6.4.1.1 Release date

In open source projects, the importance of the release date is greatly diminished as there

is typically no customer awaiting delivery. Therefore, the source code and the program

are made available before the release date in exactly the same method as they are after the

release. This blurs the line between maintenance and the earlier portions of the

development life cycle. Maintenance is typically defined as the portion of the product

life cycle after the official release and after a completed application has been delivered to

the customer (Van Vliet [2000]). Thus, maintenance traditionally begins after the

software has been used in a production environment, commonly designated version 1.0.

However, open source applications will often be put into use as soon as they can be

compiled to accomplish something useful. This stems from the “release early, release

often” philosophy popularized by the development of Linux (Raymond Cathedral

[2000]). This is necessary so that user feedback can be incorporated: unless the program

is made available before version 1.0, there is no user base to test and debug the software,

making the development of a release quality application difficult.

Due to this lack of distinction between product creation and maintenance, the open

source model is akin to an incremental model of development, where the user is given a

series of prototypes or partially working pieces of software (Van Vliet [2000]).

However, in open source projects, these increments occur far more often. The “release

often” portion of the Linux philosophy maximizes the usefulness of user feedback, as this

feedback is related to a version of the software that is hours or days old, not weeks or

months (Raymond Cathedral [2000]). However, because there is no set date when a final

product is delivered, version 1.0 is important only for the accompanying sense of

accomplishment. In terms of deliverables to the end user, there is no difference between

this release and that of version 0.9 or 1.1.

6.4.1.2 Expectation of service

While the distinction between “free as in speech” and “free as in beer” is important, many

open source projects are also offered free of charge. This results in another important

difference when compared to traditional development methods: because the user has not

paid for the software, there is no explicit expectation of service from the developer. If a

user pays for an application that does not work, the developer is expected to offer

assistance. If a user pays for a service contract and later desires a new feature, the

developer is expected to implement this feature. However, if no money is paid, such

expectations are not necessarily the case. Open source projects, though, offers users a

new option: fix the problem or implement the feature on their own. Because they have

34

access to the source, users are, in a sense, co-developers (Raymond Cathedral [2000]).

However, these tasks are far from simple for open source projects of any significant

complexity. Oftentimes, corporations do not wish to devote resources to maintaining an

open source project; they simply want software that works and someone to turn to when

problems arise. Thus, companies such as Red Hat offer distributions of Linux which

come with service contracts to “deploy, integrate, update, manage, train, [and] support”

the operating system and bundled applications (Red Hat [2003]). Red Hat collects new

patches and updates, and delivers them to their customers in an easy-to-install package.

Robert Young, the founder of Red Hat, likens his business to a car company: “Honda

buys tires from Michelin, airbags from TRW, and paint from Dupont and assembles these

diverse pieces into an Accord that comes with certification, warranties, and a network of

Honda and independent repair shops. Red Hat takes compilers from Cygnus, web servers

from Apache, an X Window System from the X Consortium… and assembles these into a

certifiable, warranted” OS [1999]. Through this certification and warranty, Red Hat

provides the maintenance activities that would normally be provided by the developer.

6.4.2 Advantages of the open source method

The differences between open source and more traditional development methods also

lead to a number of advantages during the maintenance phase. As mentioned above,

open source projects allow any end user to double as a co-developer, as users can

examine the source code and suggest bug fixes. This leads to what has been described as

Linus’s Law: “Given enough eyeballs, all bugs are shallow” (Raymond Cathedral

[2003]). In other words, “given a large enough beta-tester and co-developer base, almost

every problem will be characterized quickly and the fix obvious to someone” (Raymond

Cathedral [2003]). Brooks made note of this phenomenon in The Mythical Man Month

(Raymond Cathedral [2003]): “The total cost of maintaining a widely used program is

typically 40% or more of the cost of developing it. Surprisingly this cost is strongly

affected by the number of users. More users find more bugs” [1995] (emphasis added).

Open source builds on the advantage of “more users” by allowing all of these users, if

they so desire, to see the source code. Thus, they can make more intelligent bug reports,

or even offer a fix for a bug (Raymond Cathedral [2000]).

One of the corollaries to Linus’s Law states that “debugging is parallelizable.”

“Debugging requires debuggers to communicate with some coordinating developer, but

does not require significant coordination between debuggers” (Raymond Cathedral

[2000]). Because of this, Brooks’s Law is avoided. While there may be more people

working on the project in the form of end users with access to the source code,

communication between all of these people is not required. Thus the coordination

35

overhead is not paid and development is not slowed by their presence. To the contrary,

these users allow bugs to be found and fixed at a remarkable rate (Raymond Cathedral

[2000]).

In addition, open source software means that a user is not locked into a single

company for maintenance. As noted above, the maintainer of the project is not

necessarily the same company that developed the software. This means that the user can

choose a maintainer that fits their needs and is free to change this maintainer at any time.

Because anyone can modify the source code to correct problems and add features, if

customers are no longer satisfied with Red Hat Linux, they can easily switch to a

competitor such as SuSE or Mandrake without needing to purchase entirely new

software.

6.4.3 Mozilla

These advantages led Netscape Communications Corporation to make an unprecedented

move on January 22, 1998, when they announced plans to release the source code for

their Communicator 5.0 web browser (Netscape [1998]). At that time, no “proprietary

software had ever been released under a free software license” (Hamerly [1999]). This

led to the development of what was later named Mozilla (Raymond Cathedral [2000]),

now under control of the Mozilla Foundation (Mozilla Organization Mozilla.Org

Announces [2003]). An examination of this project gives a view of what is involved in

the maintenance of open source software and serves to demonstrate the above-mentioned

principles in action.

This project has a core development team in charge of maintaining the source by both

writing code themselves and deciding what submitted code is accepted. Because Mozilla

has a highly modular code base, each major module, such as the image library or the

XML parser, has a designated owner who knows that code best and makes the final

decision as to “what should go into the module and what” should not (Hamerly [1999]).

A number of tools make this task possible. An examination of these tools gives an

idea of what goes into the maintenance of a typical open source project. Three main

programs are used by the Mozilla team: Bonsai, Tinderbox, and Bugzilla. (See

appendices B, C, and D, respectively, for screen shots of these tools.) Bonsai acts as a

revision control system and allows developers to check-in and -out code. In addition, it

constantly runs test on the code in the background. If any major errors are found, the

developers are alerted and further check-ins are prevented until the problem has been

identified (Hamerly [1999]). Tinderbox acts as an interface to Bonsai. It allows the

developers to see what is happening to the source by showing who submitted what code

and what file versions went in to a particular build of the software (Hamerly [1999]).

36

The third tool, Bugzilla, as the name implies, is a defect tracking system created for

Mozilla. While it has now taken on a life of its own as a separate open source project, it

is still used in the maintenance of Mozilla. It allows bugs to be reported and commented

on. In addition, a specific person can be assigned to fix a problem, and dependencies and

interactions between related bugs can be noted (Mozilla Organization Bugzilla [2003]).

Through the use of these tools, bugs can be found and discussed, patches can be

submitted by the public, and once accepted, these fixes can be merged into the source.

The current state of the source code can then be visualized to decide when to release a

new version.

6.4.4 Summary of open source development

Despite a lack of distinction between the maintenance phase and earlier phases of

development, maintenance remains an important part of the open source software life

cycle. The customer generally has a choice of maintenance companies, as the maintainer

is often different than the group that initially developed the program. This, along with

the advantages of Linus’s Law, serves to distinguish open source maintenance from that

of other development methods.

6.5 Summary of the role of maintenance in development methods

As there are various methods of developing software, different approaches of

maintenance activities are adopted for each different development method. Because

Agile development processes focuses on changing the system to make it better able to

adapt to user requirements throughout the software’s lifetime, maintenance becomes

easier. It is also good to use an iterative method for the maintenance phase because an

iteration is done for each change made to the system and each bug that is fixed. This

allows for smaller and more frequent releases. This ensures that each added part of the

product is fully working before moving onto the next change. Using smaller releases also

makes it easier to code and debug each part. In addition, it allows the developers to have

a working product at the end of each iteration. On the other hand, component based

software design is built on the idea of developing software systems by selecting

appropriate off-the-shelf components and then assembling them with a well-defined

software architecture. The maintenance of such systems is done at the component level

rather than at the source code level. Therefore, if a defect is found in a specific part, the

maintainers can seamlessly replace that module with a working one. This is done easily

by modifying the glue code. Finally, open source development allows each user to serve

as a co-developer. This leads to the creation of better software and allows users to

customize a program on their own. Any of these development methodologies can be

used to make the maintenance phase more productive and efficient.

37

7. CONCLUSION

Maintenance clearly plays an important role is the life cycle of a software product. As

noted earlier, the cost of maintenance in the United States has been estimated at more

than $70 billion annually for more than ten billion lines of existing code (Sutherland

[1995]). While “traditional maintenance” applies only to corrective maintenance – fixing

bugs in the code, the maintenance phase also incorporates three other main aspects that

are considered to be elements of software evolution. Adaptive maintenance serves to

modify the software for use in new environments, such as a new hardware platform or

interfacing with a different database system. Perfective maintenance concerns adding

new functionality to a product, typically as a result of a customer request. Finally,

preventive maintenance increases the maintainability of a system, through updating

documentation or changing the structure of the software.

There are a number of models of maintenance that serve to organize the five main

tasks of the phase: isolating and analyzing the problem, designing a fix, implementing

this fix, testing the resulting system, and updating documentation to reflect the changes

made. A number of tools, such as automated analyzers and configuration management

tools, aid in the accomplishment of these tasks.

Maintenance is heavily impacted by the methods used to develop a product. Thus,

different development methods result in different maintenance procedures. Iterative

development results in the creation of a working product after each iteration. Therefore,

maintenance tasks are carried out on each working product created. This serves to ensure

that problems will not go undiagnosed and unfixed for long. Agile development, a

similar method to iterative, considers the creation of documentation a secondary

objective, thus preventive maintenance can become problematic. However, because of

the iterative nature of agile development, corrective and perfective maintenance are a

natural extension of the development life cycle. Component Based Software

Development shifts the focus of the phase to maintaining the interaction between

components rather than at the source code level, as the maintenance of the specific

components falls to their developer. Open source development blurs the line between

maintenance and earlier phases of the software life cycle due to the typical lack of a

definite release date. However, it offers the advantage of allowing users to double as co-

developers, resulting in a large debugging team.

As the cost of maintenance has been estimated at 50% of total life cycle costs (Van

Vliet [2000]), it is apparent that further study into this field will be necessary. Cost

savings in this area can have a large impact on the overall life of a software project. This

paper has presented an overview of this phase of the project life cycle and its role in

38

various means of development in the hopes of aiding this further study.

ACKNOWLEDGMENTS

Many thanks to Professor Stafford and Kevin Simmons for their help and invaluable

support throughout the research and writing phases of this paper.

REFERENCES

BASILI, V. et. al 1995. Understanding and Predicting the Process of Software
Maintenance Releases. University of Maryland, College Park, MD.

BECK, K. et al. 2003. Agile Manifesto. http://www.agilemanifesto.org

BECK, K. 1999. Extreme Programming Explained. Addison-Wesley, Boston, MA.

BERGIN, S., AND KEATING, J. 2003. A case study on the adaptive maintenance of an
Internet application. Journal of Software Maintenance and Evolution : Research and
Practice 15, 245-264.

BOWKER, P. 2001. Lost pet fees cost Toronto $700,000.
http://catless.ncl.ac.uk/Risks/subj2.1

BROOKS, F. P. 1995. The Mythical Man Month. Addison-Wesley, Boston, MA.

CAMPBELL, B. 2003. Explanation of iterative development.
http://www.allpm.com/article.php?sid=215

CHAPIN, N., HALE, J.E., KHAN, K. MD., RAMIL, J.F, AND TAN, W. 2001. Types of
software evolution and software maintenance. Journal of Software Maintenance and
Evolution : Research and Practice 13, 3-30.

CHAPIN, N., AND CIMITILE, A. 2001. Announcement. Journal of Software
Maintenance and Evolution : Research and Practice 13, 1.

COENEN, F. AND BENCH-CAPON, T. 1993. Maintenance of Knowledge-Based
Systems: Theory, Techniques and Tools. Hartnolls Ltd, Bodmin, Cornwall, UK.

COHEN, D. et al., 2003. “Agile Software Development,” Data & Analysis Center for
Software (DACS). Rome, NY.

GAO, J., TSAO, H., JACOB, S. AND WU, Y. 2003. Testing and Quality Assurance for
Component-based Software, Artech House, Boston, MA.

Gill, G. K. 1990. Cyclomatic complexity metrics revisited : an empirical study of
software development and maintenance. Center for Information Systems Research, Sloan
School of Management, MIT Press, Cambridge, MA.

GNU PROJECT. 2003. Free Software Foundation. http://www.fsf.org/

GARY, H., DAVID, D., AND JOHN, F. 1997. Component-Based Software Development
/ COTS Integration, Carnegie Mellon Software Engineering Institute.
http://www.sei.cmu.edu/str/descriptions/cbsd_body.html

39

HAMERLY, J., PAQUIN, T. AND WALTON, S. 1999. Freeing the Source: The Story
of Mozilla. Open Sources: Voices from the Open Source Revolution. Chris Dibona,
Sam Ockman, and Mark Stone. O’Reilly.
http://www.oreilly.com/catalog/opensources/book/toc.html

HAMILTON, G. 1997. JavaBeans 1.01 Specification, Sun Microsystems.
http://www.javasoft.com/beans/docs/beans.101.pdf

HOBATR, C. AND MALLOY, B. 2001. Using OCL-Queries for Debugging C++. IEEE
839-840.

HOLLAND RAILCONSULT. 2003. Advantages of changing from waterfall model to
RUP at Holland Railconsult.
http://programs.rational.com/success/Success_StoryDetail.cfm?ID=277

IEEE. 1993. IEEE Standard for Software Maintenance. IEEE Std 1219-1993. Institute of
Electrical and Electronics Engineers, inc., New York, NY.

KAMIYA, T. et al. 2001. Maintenance Support Tools for JAVA Programs: CCFinder and
JAAT. IEEE. 837-838

KEMERER, C. F. 1992 Empirical research on software maintenance, Chris F. Kemerer,
A. Knute Ream II. Center for Information Systems Research, Sloan School of
Management, MIT Presss, Cambridge, MA.

KOSKINEN, J. 2003. Software Maintenance Cost.
http://www.cs.jyu.fi/~koskinen/smcosts.htm

KROLL, P. AND KRUCHTEN, P. 2003. The Rational Unified Process Made Easy.
Addison-Wesley.

KRUCHTEN, P. 2000. http://www.therationaledge.com/content/dec_00/m_iterative.html

KRUCHTEN, P. 2001. Switching from waterfall model to RUP.
http://www.therationaledge.com/content/sep_01/t_waterfall_pk.html

LIENTZ, B.P. AND SWANSON, E.B.1980. Software Maintenance Management: A
Study of the Maintenance of Computer Application Software in 487 Data Processing
Organizations. Addison-Wesley, Reading, MA.

LIPPERT, M. et al. 2002. Extreme Programming in Action. John Wiley & Sons, Ltd,
England.

MARTIN, J. AND MCCLURE, C.1983. Software Maintenance: The Problem and Its
Solutions. Prentice Hall, Englewood Cliffs, NJ.

MICRON. 2003. Success story for Micron’s switch to RUP.
http://acm.isu.edu/ISU/download.asp?dl=2

MATENA, V., HAPNER, M. AND STEARNS, B. 2000. Applying the Enterprise
JavaBeans: Component-Based Development for the J2EE Platform. Addison-Wesley,
New York, NY.

MOZILLA ORGANIZATION. 2003. Bugzilla: Bug Tracking System.
http://www.bugzilla.org/

40

MOZILLA ORGANIZATION. 2003. Mozilla.Org Announces Launch Of The Mozilla
Foundation To Lead Open-Source Browser Efforts.
http://www.mozilla.org/press/mozilla-foundation.html

NETSCAPE COMMUNICATIONS CORPORATION. 1998. Netscape Announces
Plans To Make Next-Generation Communicator Source Code Available Free On The
Net. http://wp.netscape.com/newsref/pr/newsrelease558.html

NIESSINK, F. AND VAN VLIET, H. 2000. Software maintenance from a service
perspective. Journal of Software Maintenance and Evolution : Research and Practice 12,
103-120.

NING J.Q. 1996. A Component-Based Software Development Model, In Proceedings of
the Annual International Computer Software and Applications Conference
(COMPSAC’96), pp.389–394, IEEE.

NEUMANN, P. G. 1997. UK and Y2K: $50 billion.
http://catless.ncl.ac.uk/Risks/19.07.html#subj6.1

OBJECT MENTOR, INC. 2003. Description of iterative development.
http://www.objectmentor.com/writeUps/IterativeDevelopment

OPEN SOURCE NOW. 2003. http://www.redhat.com/opensourcenow/

TATTERSALL, G. 2003. Description of Iterative Development.
http://www.therationaledge.com/content/oct_02/m_iterativeDevelopment_gt.jsp

POOLE, C. AND HUISMAN, J. 2001 “Using Extreme Programming in a Maintenance
Environment,” IEEE Software, vol. 18, no. 6, pp. 42-50,.

PREE, W. 1997. Component-Based Software Development—A New Paradigm in
Software Engineering? Software—Concepts and Tools, 18: 169–174

RAJIV D. 1992. Banker Software complexity and software maintenance costs. Center for
Information Systems Research, Sloan School of Management, MIT Press, Cambridge,
MA.

RAYMOND, E. S. 1999. A Brief History of Hackerdom. Open Sources: Voices from
the Open Source Revolution. Chris Dibona, Sam Ockman, and Mark Stone. O’Reilly.
http://www.oreilly.com/catalog/opensources/book/toc.html

RAYMOND, E. S. 2000. The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. http://www.catb.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar/

RED HAT, INC. 2003. http://www.redhat.com/

SCHNEBERGER, S. L. 1997. Client/server software maintenance. McGraw-Hill, New
York, NY.

SCHWABER. K. 2003. Outline of Scrum.
http://www.jeffsutherland.com/oopsla/schwapub.pdf

SUTHERLAND, J. 2003. Articles on Scrum.
http://jeffsutherland.com/papers/OTUG2003/Inventing_Scrum_files/frame.htm

41

SUTHERLAND, J. 1995. Business Objects in Corporate Information Systems. ACM
Computing Surveys 27:2:274-276.

SZYPERSKI, C. 1997. Component Software: Beyond Object-Oriented Programming.
Addison- Wesley, New York, NY.

TAKANG, A.A., AND GRUBB, P.A. 1996. Software Maintenance Concepts and
Practic. Thompson Computer Press London, UK.

VAN Vliet, H. 2000. Software Engineering:Principles and Practices, 2nd Edition. John
Wiley & Sons, West Sussex, England.

VIGDER, M. R. 1999. Building Maintainable Component-Based Systems, Carnegie
Mellon Software Engineering Institute. http://www.sei.cmu.edu/icse99/papers/38/38.htm

WELLS, D. 1999. Rules of Extreme Programming.
http://www.extremeprogramming.org/rules/iterative.html

YOUNG, R. 1999. Giving It Away: How Red Hat Software Stumbled Across a New
Economic Model and Helped Improve an Industry. Open Sources: Voices from the Open
Source Revolution. Chris Dibona, Sam Ockman, and Mark Stone. O’Reilly.
http://www.oreilly.com/catalog/opensources/book/toc.html

ZELKOWITZ, M. V., SHAW, A. C., AND GANNON, J. D. 1979. Principles of
Software Engineering and Design. Prentice-Hall, Inc., Englewood Cliffs, NJ.

42

APPENDIX A: SOFTWARE MAINTENANCE COST IN SOFTWARE DEVELOPMENT

Software Life Cycle

REQUIREMENTS
ANALYSIS
(3%) *

SPECIFICATION
(3%)

CODING
(7%)

DESIGN
(5%)

TESTING
(15%)

OPERATIONS AND
MAINTENANCE
(67%)

PRODUCTION PHASE

DEVELOPMENT PHASES

* The percentages above indicate relative costs.

Maintenance phase costs most of the software life cycle

(Zelkowitz et al. [1979])

43

APPENDIX B: BONSAI

B

onsai is the revision control system
 used by the M

ozilla developm
ent team

. It allow
s users to

check-in and -out code, and constantly runs tests on the code in the background. If any m
ajor errors are found, the

developers are alerted and further check-ins are prevented until the problem
 has been identified (H

am
erly, 1999).

This screen shot show

s the m
ain screen of B

onsai, w
hich allow

s a user to search for a file they
plan to w

ork on. It can be accessed at http://bonsai.m
ozilla.org.

44

APPENDIX C: TINDERBOX

Tinderbox is a tool used by the M

ozilla developm
ent team

 w
hich acts as an interface to B

onsai. It allow
s the developers to see w

hat
is happening to the source by show

ing w
ho subm

itted w
hat code and w

hat file versions w
ent in to a particular build of the softw

are (H
am

erly, 1999).

This screen shot show
s the SeaM

onkey source tree, w
hich is the m

ain suite w
ithin the M

ozilla fam
ily of products. It show

s the tim
es

at w
hich various files of source code w

ere checked-in, as w
ell as the file size and author. This tool m

ay be accessed at http://tinderbox.m
ozilla.org/.

45

APPENDIX D: BUGZILLA

B

ugzilla is a defect tracking system
 created by the M

ozilla developm
ent team

. It allow
s bugs to be reported and com

m
ented on. In

addition, a specific person can be assigned to fix a problem
, and dependencies and interactions betw

een related bugs can be noted (M
ozilla

O
rganization Bugzilla 2003).

This screen shot show

s a bug report for Firebird, the next generation brow
ser from

 M
ozilla. It displays a sum

m
ary of the bug, w

ho
has been assigned to fix it, and the target fix tim

e. B
elow

 this inform
ation, discussion on the bug is available in the form

 of a m
essage board (not

show
n). This tool m

ay be accessed at http://w
w

w
.bugzilla.org.

46

APPENDIX E: REQUIREMENT MANAGER IN TESTDIRECTOR

TestDirector’s Requirements Manager links test cases to testing requirements, ensuring
traceability.

47

APPENDIX F: TEST PLAN TREE IN TESTDIRECTOR

The test plan tree in TestDirector is a graphical representation of the organization’s test

plan.

48

APPENDIX G: CUSTOMIZABLE ACTION-DRIVEN WORKFLOW

49

APPENDIX H: DEFINE CUSTOM VIEWS

