
1

Software Maintenance Management
Strategies: Observations from the Field
George Stark, MITRE

Paul Oman, Univ of Idaho

Abstract

There is much literature describing software maintenance process models, but few
comparative studies on the approaches used by managers in the field. This paper
describes three software maintenance management strategies currently implemented by
six organizations. The strategies are compared on the attributes of performance,
economics, efficiency, and end-product quality. The paper defines measurements for
each attribute and describes the data collected over the past two years. Our observation is
that each strategy has attributes that make it appealing for implementation by a software
maintenance project manager. The key task for a manager is defining the attribute that
they would most like to optimize and choosing a strategy that supports that goal.

 Introduction

According to IEEE Std 1219, “IEEE Standard for Software Maintenance,”
software maintenance is

Modification of a software product after delivery to correct faults, to improve performance or
other attributes, or to adapt the product to a modified environment.[1].

The importance of software maintenance in today’s industry cannot be
overestimated. It is widely recognized as the highest cost phase of the software
life cycle with estimated costs of between 60% and 80% of the total software
budget [2-4]. Given this high cost, some organizations are looking at their
maintenance process as an area for competitive advantage [5].

Several authors have noted that maintenance of software systems intended
for a long operational life pose special management problems [6-8]. The
Software Engineering Institute (SEI) believes that organizational processes are a
major factor in the predictability of cost and quality of software [9]. Furthermore,
Alexander and Davis [15] point out that today’s project managers choose a
software process model using ad hoc, unjustified, and undocumented criteria.
The selection of an inappropriate process model can result in (1) a release that
does not satisfy user needs (reflected by the number of user-created problem
reports and requirements volatility), (2) missed schedules with increased cost,
and (3) more defects being released to the field.

2

At a macro level, two distinct activities occur during software maintenance:
Requirements Validation and Maintenance Release. The requirement validation
process consists of reviewing individual change requests for impact. A change
request can be either a defect correction or an enhancement to the system. An
engineer reviews the contents of the change request to ensure clarity,
completeness, feasibility, and consistency with outstanding change requests.
Once the change request is determined a valid requirement, it is placed in a
queue awaiting implementation during a maintenance release. Most
organizations have a backlog of change requests available. While the
requirement validation activity is central to the software maintenance process, it
is not a focus of this paper.

Early published software maintenance release models viewed the
implementation of changes from the point of view of the software engineer
dealing with an individual change [10-13]. Even more recent release descriptions
[1, 14] consider software maintenance as a one change at a time function. In our
experience, however, a maintenance release is generally defined as a group of
change requests based on the user priority, changes that affect the same
subsystem, logical timing, and other activities underway at the user location.
Under this scenario, a management view is needed to understand the cost,
quality, and timeliness implications of different implementation strategies. We
identified four release implementation strategies available to software
maintenance managers:

• Fixed staff/variable schedule
• Fixed schedule/variable staff
• Variable schedule/variable staff
• Fixed staff/fixed schedule

The overall objectives of this paper are: (1) to present software maintenance
managers with the options available to them for implementing software releases,
(2) to report our observations of these options in terms of four process criteria,
and (3) to draw conclusions based on the first two objectives. Section 2 of this
paper describes three of the four management strategies. The fixed staff/fixed
schedule strategy was not implemented by any of the six organizations that we
observed, thus it is not described further. Section 3 identifies the key strategy
criteria considered in this study (i.e., performance, economics, efficiency, and
quality) and discusses the data collected. Section 4 presents the results and
discusses their implications. Finally, Section 5 summarizes our conclusions and
points out the limitations of our study.

2. Maintenance Management Options

This section describes three management strategies for software
maintenance organizations that reside several hundred miles from their users.
According to Pigoski, distance from the user has distinct advantages and

3

disadvantages [4]. The advantages include: better documentation, formal
release procedures, and more clearly defined processes. The disadvantages
are: significant training is required, user support can suffer, morale can decrease
if the wrong people are assigned. We observed all of these effects on the
programs we reviewed. Additionally, we observed that a strong measurement
program supported the management throughout the maintenance process.
Measurement helped managers to communicate more clearly with their
customers on issues such as software cost estimates, requirements volatility,
schedule constraints, and product quality analysis.

The strategies are labeled as: (1) fixed staff/variable schedule, (2) fixed
schedule/variable staff, and (3) variable schedule/variable staff. A fixed
staff/fixed schedule strategy was not implemented by any of the six organizations
that we observed, thus it is not described further. For each strategy it is
assumed that the requirement validation activity is completed and the change
request is available for incorporation in a version release. It is from this point in
the maintenance life-cycle that the three strategies are compared.

Fixed Staff/Variable Schedule Strategy

Figure 1 shows the implementation of the fixed staff/variable schedule
strategy. In this implementation, there is a fixed pool of maintenance engineers
available to the organization. A maintenance engineer takes a change request
off the backlog queue and begins understanding, designing, coding, and unit
testing the change. The available staff work as many changes as possible
through unit test until a “release freeze” is declared by management. The
release freeze is scheduled depending on the operational mission needs of the
system, but is typically every six months for the systems we observed.
Integration test time is scheduled on the operational platform for 30 days after the
release freeze. All changes that the engineers declare complete through unit test
are then bundled into a release for integration test and formal turnover to the
configuration management team. Note there in nothing inherent in the process
that precludes code inspections or peer reviews, and some engineers performed
them. They were not, however, formalized in the organizations that we
observed.

Since the content is determined by the changes the engineers have unit
tested up to the release freeze date, and the release schedule is determined by
the integration test schedule, this process, should always contain 100% of the
unit-tested content and always be delivered on-time. The advantage of this
process over the other two is its flexibility in choosing release content and ease
with which work is assigned.

4

Design Code
Unit
Test

Clean
up

CM

Several Months -

Complete as many

on list as possible

SW Engineering
Start W orking

Release Freeze
VCN W ritten

 DT&E in one month

100% Content
100% Schedule

SCF # 1

SCF #N

.

.

.
DT&E

Figure 1. Fixed Staff/Variable Schedule Software Process

Variable Staff/Fixed Schedule Strategy

Figure 2 depicts the flow of the variable staff/fixed schedule strategy. In this
process, there may be a fixed pool of maintenance engineers available, but they
are allocated to individual software releases. The product release date is
established between the customer and supplier based on a mission need date.
Once the date is established and the “high priority” changes are agreed to for the
mission, the system analysts prepare a preliminary version content notice (VCN)
and a release plan. The preliminary VCN may contain additional changes to the
software based on the change request backlog or the schedule. The software
engineers begin working on the priority changes while the preliminary VCN and
plan are being reviewed by management. If the engineers or managers feel that
the VCN is too ambitious or that some changes do not make sense within the
context of the version, the content or staffing may be re-negotiated. A final VCN
for the release is then issued prior to the completion of all unit testing. After unit
test the new version is delivered to the configuration management team for
integration and operational test prior to formal acceptance by the user.

User VCN
Request
and Plan Mgmt

Approval

Code Clean
up CM

Analysis

Final
VCN

DT&E

? Content
? Schedule

Design

Contractor

Negotiate
Changes
to User

VCN

Unit
Test

SCF# 1

SCF#N

Need Date
Established

Figure 2. Variable Staff/Fixed Schedule Process

Since the planned schedule is established between six and eighteen months
in advance for this process and some content is negotiable throughout the

5

process, the actual content and delivery date vary with each release. The
advantage this process has over the other two is its clearly defined need dates
and priority changes. This forces the maintenance team to actively coordinate
the release requirements with the user community and focuses the release on
achieving the mission goals.

Variable Staff/Variable Schedule Strategy

The variable staff/variable schedule strategy is shown in Figure 3. In this
strategy, there is not a fixed staff of maintenance engineers, the staff size and
skill varies with each release. To determine the release content system users
submit a VCN request to the maintenance team. The maintenance team reviews
the request and estimates the cost, schedule, and risk associated with the
release.

Based on this review, the maintenance team may either add content or
negotiate less content with the users. After the content is determined, the
maintenance team negotiates a release cost and schedule with a software
maintenance contractor to design, code, test, and integrate the release.
Milestone reviews are held during the implementation and changes to the plan
are made as necessary. The three technical reviews that occur in this process,
but are not explicit in the other two processes, are an advantage because the
reviews identify issues and help to ensure quality in the release.

SW Engineers

Start Working

CM

? Content
? Schedule

SCF #1

SCF #N

.

.

.

Negotiate

Release Plan
with Users

Engineering
Review: $,

Time, Risks,
Impacts

User VCN
Based on

Anticipated
Need Dates

Req

Review
Design Code

Review
Changes
to Plan?

Unit

Test
Clean

up

Review
Changes
to Plan?

Review
Changes
to Plan?

DT&E

Figure 3. Variable Staff/Variable Schedule Process

3. Strategy Success Criteria and Data Collection

Basili and Rombach [16] developed the goal/question/metric paradigm to help
project managers tailor their software process to organizational goals and their
operational environment. Alexander [17] proposed a set of 20 criteria grouped
into 5 categories (personnel, problem, product, resource, and organization) to

6

help a project manager select a process model. Whitten, Bentley, and Barlow
[18] offer the PIECES criteria (Performance, Information, Economics, Control,
Efficiency, and Service) for improving systems and processes. Thus, the criteria
that should be used in making strategy comparisons is open to debate.

The criteria presented here are by no means definitive and are not unique to
software maintenance process models. However, the particular criteria were
selected with specific reference to these strategies using literature research and
the informed judgments of managers in the field. In some cases, the application
may result in the elimination of inferior strategies. However, the relative weight to
be placed on different criteria depends on the context in which the strategy is
being implemented (as described above). Thus, all of the models may survive
the comparison process, each with its own area of applicability.

The criteria we chose are:

• Process Performance
• Economics
• Process Efficiency
• Product Quality

We collected data to calculate measures for each of the criteria between
November 1994 and December 1996 on six different programs. Three programs
were using the fixed staff/variable schedule strategy, two were using the variable
staff/fixed schedule strategy, and one used the variable staff/variable schedule
strategy.

Process performance has two components: (1) throughput and (2) “priority”
cycle time. Throughput was measured as the average number of changes
delivered to the user per year. The “priority” cycle time was measured as the
75th percentile of the number of days required to deliver a priority change. The
cycle time was calculated as

Cycle _ Time = Change _ delivery _ date − Re quirement _ validation _ date (1)

The 75th percentile was chosen because the cycle time distribution is skewed
with the majority of the changes taking a short period of time, while a few take a
long time to complete. Figure 4 is a cumulative distribution plot from one of the
programs we observed. To read this plot, find 75% on the y-axis, (this is just to
the right of the knee of the curve) read down to 135 days on the x-axis. This
means that 75% of the time this strategy delivers high priority changes in less
than 135 days from the time the requirement is validated. Note: The average for
this distribution is 129 days with a standard deviation of 148 days.

7

Cumulative Distribution Function for Priority Changes

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 100 200 300 400 500 600 700

Days to Complete

Figure 4. Example Cumulative Distribution Function of Priority
Change Request Times for One Maintenance Strategy

For all three strategies the priority of the change was determined by the system
user as either emergency (highest priority), urgent (high priority), or routine (low
priority). If the user determined the change was either emergency or urgent
priority, its cycle time contributed to the percentile reported.

The economics of the process is calculated as the average cost per change
delivered for each process. The cost is tracked closely per release and includes
all expenditures including engineering, management, travel, configuration
management, hardware maintenance on the software development system, and
financial overhead. The cost per change is calculated as

Cost _ per _ change =
Total _ dollars _ spent

Total _ changes _ delivered
(2)

For example, Figure 5 shows the total cost for each release completed during
FY96 for one organization and the number of changes delivered in each release.
The average cost per change is calculated by

cost per change = (13135 + 12417 + 12300) ÷ (197+183+108) = 77.56

8

Release

0

5000

10000

15000

96-1 96-2 97-1

13135
12417 12300

197

Changes

183

Changes
108

Changes

Cost
K$

Figure 5. Cost per Release for One Strategy for One Year

The efficiency of the process is defined in terms of two attributes: (1) the
percent of schedules met, and (2) the percent of releases that experienced
requirements changes after the contents were defined. The percent of schedules
met is calculated as:

Schedule _ % =
deliveries _ accepted _ on _ or _ before _ planned _ date

Total _ number _ of _ deliveries _ made

* 100

(3)

Naturally, the target for each strategy is 100% of the schedules met. Figure
6 shows the raw data for one strategy. In this plot 100% means that the product
was delivered on the planned date (e.g., P5), a value less than 100% means the
product was delivered early (e.g., C2) and a value greater than 100% means the
product was delivered late (e.g., C1). For this strategy, only 24% (4 out of 17) of
the planned delivery dates were met during the fiscal year plotted.

9

Schedule Performance to Plan by Delivery for FY95

0%

50%

100%

150%

200%

250%

300%

P4 PP2 C1 E2 G2 P5 E3 G3 PP3 B3 P6 E4 C2 E5 P7 PP4 E6

 Delivery

Percent of
Planned

Schedule

Met Schedule Failed to Meet Schedule

Figure 6. Schedule Performance to Plan for One Strategy During FY95

The second attribute of efficiency is the percent of releases that experienced
no content changes after the release plan was established. This is calculated as

Delivery _ Efficiency =
deliveries _ without _ content _ changes

Total _ number _ of _ deliveries _ made

* 100 (4)

Naturally, the target for each process is 100%, but this is rare. In fact, Figure
7 shows that for this strategy 8 of 13 deliveries experienced content change.
Ambiguity in the requirements sometimes causes changes in scope. Customers
changing their minds about priorities as well as schedule and quality pressure
often result in content additions or deletions from the plan.

R e q u i r e m e n t s V o l a t i l i t y f o r F Y 9 6

0%

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

10 0%

P8 C3 E7 E8 P9 P1 0 BT 5 E9 E1 0 P1 1

Chang e s

Delet e s

A dds

BC4 PP5 BC5

Del ivery

Percent o f
P lanned

R equi rem ents
Changed

Figure 7. Sample Graph of Data Collected for Requirements Volatility by Type

10

The quality of the product produced by each strategy was measured as the
percent of changes with customer found defects during operational acceptance
testing. It is calculated as:

Quality = 1 −
_ changes _ with _ defects _ identifed _ during _ customer _ testing

Total _ number _ of _ changes _ delivered

* 100

(5)

Again, the goal here is 100%. The goal of each process is to deliver the
customer a software release that will execute the operational scenarios without
failure. Customers often use different test scenarios than the developers and
have different interpretations of failure, thus the metric goal was not met by any
of the processes. Figure 8 shows the quality metric for four releases of one
process. This is also a measure of the amount of rework required by the process
since the defects found during customer testing are often written up as new
change requests and must move through the process again.

Release Quality for One Project

0%

20%

40%

60%

80%

100%

96-1 96-2 97-1 97-2

Release

Figure 8. Sample Release Quality Metric for One Project

4. Results

Using the measurements defined in the previous section, the three
maintenance strategies were compared after two years of operation. Table 1
displays the results. The table contains a row for each strategy, a row that
describes the goal for each measure, and a column for each measurement
collected. From the table, we observe the management tradeoffs that should be

11

considered in choosing a strategy. For example, a lower schedule achievement
rate corresponds to higher quality in the end product.

Table 1. Summary Process Comparison Table

Process Performance Efficiency

Criteria

Process

Average
Throughput
(Changes
Delivered
per year)

Priority
Change

Response
Time

(Days)

Economics
(K$ per
Change)

%
Schedules

Met

%
Releases
with no
Content
Change

(total
releases)

Quality
{1- (number
of defects

per change)}

Goal High Low Low 100% 100% 100%
Fixed Staff /
Variable
Schedule (3
sites)

190 111 78 100%* 70% (10) 60%

Variable Staff /
Fixed Schedule
(2 sites)

445 246 104 72% 22% (23) 71%

Variable Staff /
Variable
Schedule
(1 site)

136 135 41 43% 40% (30) 94%

*always 100%

Table 1 shows the variable staff/fixed schedule had a higher throughput than
the other two strategies. The strategy was also able to absorb a large
percentage of requirement's volatility and still meet 72% of their schedules.
However, the variable staff/fixed schedule strategy had the highest cost per
change and longest priority cycle time. This makes some sense since the
schedule pressure and the requirement's volatility require more staff and time to
complete. Since this process is schedule driven, the urgent changes are made
“in the next available” planning cycle, rather than incorporated into the current
release. Because releases are planned at least one year in advance the cycle
time is at least 365 days for urgent changes. The emergency changes (which
are incorporated into the current release or become their own release) bring the
cycle time down.

Although the variable staff/variable schedule strategy delivers the fewest
changes per year, it appears the most cost-effective and it delivered the highest
quality products over the time period. The higher quality is attributed to the
impact of the multiple reviews and the addition of a requirement review missing
from the other two processes.

As expected, the fixed staff/variable schedule process delivered the best “on-
schedule” performance, while the variable staff/variable schedule process met

12

only 43% of their plans. Interestingly, the fixed staff/variable schedule process
showed 30% of the releases had a content change. This means that changes
were added or deleted to the release during the “freeze” period on 3 of the 10
releases observed.

5. Conclusions and Observations

Three different software maintenance management strategies were described
and compared on four attributes: performance, economics, efficiency, and
quality. Six measures were used to define the four attributes. All three
processes have attributes that make them appealing to software maintenance
managers:

• The fixed staff/variable schedule strategy allows managers to prioritize
changes and allocate resources based on individual engineering skills. It
also supports the definition of delivery dates based on the sustaining
organization’s productivity.

• The variable staff/fixed schedule strategy handles requirement volatility
and delivers a large number of changes per year.

• The variable staff/variable schedule strategy requires more formal
planning and management oversight than the other two strategies, but
experienced lower cost per change and highest customer satisfaction.

• Although we have observed these three strategies in operation over two
years, our results must be caveated as follows:

Ø Individual changes vary greatly in scope. For example, some changes
are simple database updates while others require an 8-10 page
specification and a thousand source lines of code to implement. This
variability affects the economics of the strategy, the throughput, and the
quality. We assume that because of the large number of total changes
for each strategy that the statistical law of large numbers takes affect and
that there was a similar distribution of change difficulty across the six
programs.

Ø User expectations and participation in the release process differs. For
one of the organizations we observed, the customer rarely participated in
the version release process. Others had user teams support the planning
and execution of the release. This participation affects the change
prioritization, the release volatility, and the customer satisfaction with the
release. We believe that customer participation should be encouraged in
all strategies.

Ø The goals of the program management affect the outcome of the process.
For example, if a program manager emphasizes flexibility, then the key

13

measures for the strategy would be change response time or throughput.
Whereas, if a manager emphasizes economics, then cost per change
becomes the key strategy measure.

6. References

1. IEEE, Standard for Software Maintenance, IEEE Std 1219, IEEE Computer
Society, Los Alamitos, CA, 1993.

2. Lientz, B. P. and E. B. Swanson, “Characteristics of Application Software
Maintenance,” Comm of ACM, vol. 21, no. 6, Jun. 1978, pp. 466-471.

3. Parikh, G., The Guide to Software Maintenance, Winthrop Publishers,
Cambridge, Mass, 1982.

4. Pigoski, T. M., Practical Software Maintenance, John Wiley & Sons, Inc.,
New York, NY, 1997, pp. 29-31.

5. Moad J., “Maintaining the Competitive Edge,” Datamation, vol. 36, no. 4,
Feb. 1990, pp. 61-66.

6. Card, D. N., D. V. Cotnoir, and C. E. Goorevich, “Managing SW
Maintenance Cost and Quality,” Proc. Intl. Conf on SW Maint., Sept. 1987.

7. Chapin, N., “The Software Maintenance Life-Cycle,” Proc. Intl. Conf on SW
Maint., 1988.

8. Hariza, M., J. F. Voidrot, E. Minor, L. Pofelski, and S. Blazy, “Software
Maintenance: An Analysis of Industrial Needs and Constraints,” Proc. Intl.
Conf on SW Maint., Orlando, Fl., 1992.

9. Software Engineering Institute (SEI), “Software Process Maturity
Questionnaire Capability Maturity Model, version 1.1,” Carnegie Mellon
Univ., Pittsburgh, PA, 1994.

10. Boehm, B., Dec. 1976, “Software Engineering,” IEEE Transactions on
Computers, Vol. 12, No. 25, pp. 1226-1242.

11. Martin, J. and C. McClure, 1983, Software Maintenance: The Problem and
Its Solutions, Prentice-Hall, Englewood Cliffs, NJ.

12. Sharpley, W. K., Nov. 1977, “Software Maintenance Planning for Embedded
Computer Systems,” proc. IEEE COMPSAC, pp. 520-526.

13. Parikh, G., 1982, “Some Tips, Techniques, and Guidelines for Program and
System Maintenance,” Techniques of Program and System Maintenance,
Winthrop Publishers, Cambridge, MA, pp. 65-70.

14. Basili, V. R., L. C. Briand, S. Condon, Y. Kim, W. L. Melo, and J. D. Valett,
March 1996, “Understanding and Predicting the Process of Software
Maintenance Releases,” proc. 18th Intl. Conf. on SW Eng., Berlin,
Germany.

14

15. Alexander, L. C., and A. M. Davis, Sept. 1991, “Criteria for Selecting
Software Process Models,” proc. 15th Annual Intl. Computer Software &
Applications Conf. - COMPSAC 91, Tokyo, Japan, pp. 521-528.

16. Basili, V. R., and H. D. Rombach, 1987, “Tailoring the Software Process to
Project Goals and Environments,” proc. 9th Intl. Conf on Software
Engineering, Washington, DC, IEEE Computer Society Press.

17. Alexander, L. C., 1990, Selection Criteria for Alternate Life Cycle Process
Models, Software Systems Engineering M. S. Thesis, George Mason
University, Fairfax, Va.

18. Whitten, J. L., L. D. Bentley, and V. M. Barlow, 1994, Systems Analysis and
Design Methods (3rd ed), pp. 99, Irwin Publishing, Englewood Cliffs, NJ.

