
96 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 1, JANUARY 1998

Analysis of Preventive Maintenance in
Transactions Based Software Systems

Sachin Garg, Member, IEEE, Antonio Puliafito,
Miklós Telek, and Kishor Trivedi, Fellow, IEEE

Abstract —Preventive maintenance of operational software systems, a novel technique for software fault tolerance, is used
specifically to counteract the phenomenon of software “aging.” However, it incurs some overhead. The necessity to do preventive
maintenance, not only in general purpose software systems of mass use, but also in safety-critical and highly available systems,
clearly indicates the need to follow an analysis based approach to determine the optimal times to perform preventive maintenance.

In this paper, we present an analytical model of a software system which serves transactions. Due to aging, not only the service
rate of the software decreases with time, but also the software itself experiences crash/hang failures which result in its unavailability.
Two policies for preventive maintenance are modeled and expressions for resulting steady state availability, probability that an
arriving transaction is lost and an upper bound on the expected response time of a transition are derived. Numerical examples are
presented to illustrate the applicability of the models.

Index Terms —Preventive maintenance, software fault tolerance, software rejuvenation, transactions based software systems,
reliability modeling, Markov regenerative models.

—————————— ✦ ——————————

1 INTRODUCTION

T is now well established that system outages are caused
more due to software faults than due to hardware faults

[24], [11]. Given the current growth in software complexity
and reuse, the trend is likely to grow. It is also well-known
that, regardless of development, testing, and debugging
time, software still contains some residual faults. Thus,
fault tolerant software has become an effective alternative
to virtually impossible fault-free software. The scope of this
paper lies in the quantitative evaluation of a novel tech-
nique for software fault tolerance, viz., preventive mainte-
nance of operational software systems. Although the use of
preventive maintenance is common in physical systems, its
potential effectiveness in enhancing software dependability
has only recently been recognized. As we shall exemplify
later, in certain situations, it is simply necessary.

Traditional methods of software fault-tolerance, namely
N-version programming [2], recovery blocks [23], and N-
self checking programming [19], are all based on design
diversity. Primarily, the following two factors motivate the
need to explore alternate techniques for software fault tol-
erance.

1) Reliability/Availability Versus Cost
 The need for high reliability and availability is not just

restricted to safety-critical systems [11]. Telephone

switches [7], airline reservation systems, process and
production control, stock trading systems, computer-
ized banking, etc., all demand very high availability.
A survey showed that computer downtime in non-
safety critical systems cost over 3.8 Billion dollars in
1991 in the U.S. [25]. With the explosive increase in
the popularity of network centric computing, web
servers, too, need to be highly available. In most of
these systems, the cost of providing fault tolerance via
the use of multiple variants is prohibitive. With com-
mercial considerations driving technology more than
ever, release times of software are required to be less
and less, forcing organizations to reduce testing and
debugging cycle times. Further, with software reuse
gaining popularity, many times it is simply not feasi-
ble to test the middleware and operating system on
which the final software product is based. This leaves
no option but to tolerate the residual faults during its
operational phase.

2) Nature of software failures
More recently, from the study of field failure data, it
has been observed that a large percentage of opera-
tional software failures are transient in nature [12],
[13], [17], caused by phenomena such as overloads or
timing and exception errors [24], [5]. A common char-
acteristic of these type of failures is that, upon re-
execution of the software, the failure does not recur.
The error condition, which results in the failure, typi-
cally manifests itself in the operating environment of
the executing software. Due to the complexity of
modern-day operating systems and intermediate
layer software, it has been observed that the same er-
ror condition, when the software is re-executed, is
unlikely to recur, thus avoiding the failure.

0018-9340/98/$10.00 © 1998 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• S. Garg is with Lucent Technologies, Bell Laboratories, Murray Hill, NJ
07974. E-mail: sgarg@research.bell-labs.com.

• A. Puliafito is with Istituto di Informatica, Università di Catania, Catania,
Italy.

• M. Telek is with the Department of Telecommunications, Technical Uni-
versity of Budapest, Budapest, Hungary.

• K.S. Trivedi is with the Department of Electrical and Computer Engineer-
ing, Duke University, Durham, NC 27706.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 105902.

I

GARG ET AL.: ANALYSIS OF PREVENTIVE MAINTENANCE IN TRANSACTIONS BASED SOFTWARE SYSTEMS 97

A study done by Adams implies that the best approach to
masking software faults is to simply restart the system [1].
Environment diversity, a generalization of restart, has been
proposed as a cheap, yet effective, technique for software
fault-tolerance [15], [18]. Typical transient failures occur
because of design faults in software which result in unac-
ceptable erroneous states in the OS environment of the
process. The OS environment refers to resources that the
program must access through the operating system, such as
swap space, file systems, communication channels, key-
board, monitors, time, etc. [27]. The key idea behind envi-
ronment diversity is to modify the operating environment
of the running process. Typically, this has been done on a
corrective basis, i.e., upon a failure, the software is restarted
after some cleanup, which, in most cases, results in a differ-
ent, error free OS environment state, thus avoiding further
failure.

Recently, the phenomenon of software “aging” [16] has
come to light, where such error conditions actually accrue
with time and/or load. This observation has led to propos-
als of a pro-active approach to environment diversity in
which the operational software is occasionally stopped and
“cleaned up” to remove any potential error conditions.
Since the preventive actions can be performed at suitable
times (such as when there is no load on the system), it typi-
cally results in less downtime and cost than the corrective
approach. Even so, it incurs some overhead and, if done
more often than necessary, will result in higher down-
time/cost. Therefore, an important research issue is to determine
the optimal times to perform preventive maintenance of opera-
tional software systems.

In this paper, we present a stochastic model for a trans-
actions based software system which employs preventive
maintenance (henceforth referred to as PM). Three meas-
ures, the availability of the software to provide service, the
probability of loss of a transaction, and the response time of
a transaction, are considered. The model is developed un-
der very general conditions and requires numerical solu-
tion. We compute each of the three measures under two
policies for PM, which were proposed in [9], in the same
framework. The rest of the paper is organized as follows. In
Section 2, we present real life examples of aging and PM in
software systems to illustrate the different forms in which
they occur and to motivate the need for analysis of such
systems. In Section 3, we describe the system model, along
with the assumptions on modeling aging, failure, and PM
policies. Section 4 is comprised of the analytical solution of
the model for availability, loss probability, and response
time measures. In Section 5, we illustrate the usefulness of
the models via numerical examples. The two PM policies
are compared along with the effect of model parameters on
the derived measures. It is shown that the PM interval
which maximizes availability may be very different from
the PM interval which minimizes the probability of loss or
the response time, indicating caution in the selection of the
optimum PM interval. Finally, in Section 6, we present the
conclusions.

2 PREVENTIVE MAINTENANCE OF OPERATIONAL
SOFTWARE

While monitoring real applications, the phenomenon of
software “aging” has been observed to result in performance
degradation and/or transient failures.1 Failures of both
crash/hang type, as well as those resulting in data inconsis-
tency because of aging, have been reported. Memory bloating
and leaking, unreleased file-locks, data corruption, storage
space fragmentation, and accumulation of roundoff errors
are some typical causes of slow degradation.

The widely used web browser “Netscape” is known to
suffer from memory leaks which lead to occasional crash or
hang of the application(s), especially in a computer with
relatively low swap space. A similar memory leaking
problem has been reported in the news-reader program
“xrn.” All PC users are familiar with the occasional “switch
off and on” of the computer to recover from hangs. Such
examples of aging in software of mass use are probably just
an inconvenience, but, in systems with high reliabil-
ity/availability requirements, software aging can result in
high cost. Huang et al. report this phenomenon in tele-
communications billing applications where, over time, the
application experiences a crash or a hang failure [16].
Avritzer and Weyuker have witnessed aging in transaction
processing software systems where the effect manifests as
gradual performance degradation [3]. The service rate of
the software decreases with time, increasing queue lengths
and, eventually, starts losing packets. Perhaps the most
vivid example of aging can be found in [21], where the fail-
ure resulted in loss of human life. Patriot missiles, used
during the Gulf war to destroy Iraq’s Scud missiles, used a
computer whose software accumulated error. The effect of
aging in this case was misinterpretation of an incoming
Scud as not a missile but just a false alarm, which resulted
in the death of 28 U.S. soldiers.

Huang et al. [16] have proposed the technique of Soft-
ware Rejuvenation, which simply involves stopping the run-
ning software occasionally, removing the accrued error
conditions, and restarting the software. Garbage collection,
flushing operating system kernel tables, and reinitializing
internal data structures are some examples of what cleaning
the internal state of a software might involve. An extreme,
but well-known, example of rejuvenation is a hardware
reboot. It has been implemented in the real-time system
collecting billing data for most telephone exchanges in the
U.S. [4]. A very similar technique has been used by Avritzer
and Weyuker in a large transaction processing software
system [3], where the server is rebooted occasionally, upon
which, its service rate is restored to the peak value. They
call it software capacity restoration. Both of the above inde-
pendently proposed techniques are specific cases of PM
performed on operational software. Grey [14] proposed
performing operations solely for fault management in SDI
(Strategic Defense Initiative) software, which are invoked

1. It should be noted that the term “software aging” was used in [1] to
mean degradation in the quality of the software by an increase in number
or severity of design faults due to repeated bug fixes, which is different
from our meaning. Perhaps, in our context, “process aging” is more appro-
priate, but we choose to keep the term software aging to be consistent with
the usage by Huang et al. [16].

98 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 1, JANUARY 1998

whether or not the fault exists, and called it “operational
redundancy.” Tai et al. [26] have proposed and analyzed
the use of on-board PM for maximizing the probability of
successful mission completion of spacecraft with very long
mission times. In a safety critical environment also, the ne-
cessity of performing PM is evident from the example of
aging in Patriot’s software [21]. In the words of the author,
“On 21 February, the office sent out a warning that ‘very long
running time’ could affect the targeting accuracy. The troops
were not told, however, how many hours ‘very long’ was, or that
it would help to switch the computer off and on again after 8
hours.”

In some cases, PM is performed on a per process basis,
while, in others, a system-wide maintenance is done. In
each case, however, the maintenance incurs an overhead
which should be balanced against the cost incurred due to
unexpected outage caused because of a failure. This, in
turn, demands a quantitative analysis, which, in the context
of software systems, has only recently started getting atten-
tion. Bernstein stresses the need for emergence of a new
field, “software dynamics” [4], and calls for “developing
the design constraints, analytically, to make software be-
havior periodic and stable in its operational phase.”

The contribution of this paper lies in presenting an ana-
lytical model for transaction based software which experi-
ences aging and employs PM to avoid unexpected outages.
Furthermore, two policies for PM are analyzed:

1) Purely time-based: PM is performed at fixed determi-
nistic interval, and

2) Time and load-based: PM is attempted at fixed inter-
vals and performed only if the software is currently
not serving any transactions.

In both cases, equations for the steady state availability, the
long run probability of a transaction loss, and an upper
bound on the mean response time are derived.

2.1 Previous Work
The single most important factor (as will be shown via nu-
merical examples) in determining the accuracy of such a
model is the assumptions made in capturing aging. Primar-
ily, assumptions regarding the following aspects of aging
need to be made:

• Effect of Aging: Effect of aging has been witnessed as
crash/hang failure, which results in unavailability of
the software, and gradual performance degradation.2

2. Incorrect output because of data inconsistency, from a modeling
standpoint, can be captured in the model for crash/hang failure, since it is
simply a failure at a specific time point.

User perceivable impact of one may be more domi-
nant than the other, but, typically, both are present to
some degree in a software which experiences aging.
In [16], [8], [9], [10], [26], only the failures causing un-
availability of the software are considered, while, in
[22], only a gradually decreasing service rate of a
software which serves transactions is assumed. In this
paper, we consider both the effects together in a sin-
gle model.

• Distribution: There is no consensus on the time to fail-
ure distribution of an operational software and of the
nature of service degradation it experiences. There-
fore, for wide applicability, it is essential that a model
be able to accommodate general distributions and not
be restricted to predetermined ones. This way, with
the availability of data, a specific distribution can then
be applied on a per system basis. Models proposed in
[16], [8], [9] are restricted to hypo-exponentially dis-
tributed time to failure. Those proposed in [10], [22],
[26] can accommodate general distributions, but only
for the time to failure. In our model, we allow for
generally distributed time to failures, as well as for
the service rate to be an arbitrary function of time.

• Dependence on Load: None of the previous studies
capture the effect of load on aging. As it has been
noted that transient failures are partly caused by
overload conditions [24], in our model, we allow for
the failure and the service rates to be functions of
time, instantaneous load, mean accumulated load, or
a combination of the above.

Table 1 summarizes the differences in capturing the ef-
fect of aging and on the assumptions in the distribution and
dependence of these effects in previous work. It also shows
the differences in the measures evaluated. In [10] and [26],
software with a finite mission time is considered. Mean
completion time in the presence of aging failures is com-
puted in [10], whereas, in [26], the probability of successful
completion by the mission deadline is computed. In the
rest, [16], [8], [9], as well as in this paper, measures of inter-
est in a transaction based software intended to run forever
are evaluated. Where, in [16] and [8], only the steady state
availability is computed, both steady state availability, as
well as the long run probability that a transaction is denied
service, are computed in [9]. In this paper, we evaluate the
steady state availability, the probability of loss of a transac-
tion, as well as an upper bound on the mean response time
of a transaction. Optimizing one may result in an unac-
ceptable value for the other. Optimal selection based on

TABLE 1
COMPARISON OF MODEL ASSUMPTIONS AND MEASURES WITH PREVIOUS WORK

Aging captured as: Model load Measure Evaluated
crash/hang Performance general dependence? Availability Loss Response Completion

failure degradation distribution? Prob. Time Time Prob.
[16] X X
[8] X X
[9] X X X

[10] X X X
[22] X X X
[26] X X X
Our X X X X X X X

GARG ET AL.: ANALYSIS OF PREVENTIVE MAINTENANCE IN TRANSACTIONS BASED SOFTWARE SYSTEMS 99

constraints on one or more of the measures can then be
made via solution of our model. Last, all previous models
except [10] and [26] are just special cases of the model pre-
sented in this paper.

The rest of the paper deals with the proposed model,
evaluation of the three measures, and numerical examples.

3 SYSTEM MODEL

The system we study consists of a server type software to
which transactions arrive at a constant rate l. Each transac-
tion receives service for a random period. The service rate
of the software is an arbitrary function measured from the
last renewal of the software (because of aging), denoted by
m(◊). Therefore, a transaction which starts service at time t1,
occupies the server for a time whose distribution is given

by 1 1-
- ◊I

e
dt

t

t
m0 5

. m(◊) can be a constant, a function of time t, a
function of the instantaneous load on the system, a function
of total processing done in a given interval, or a combina-
tion of the above. We shall defer the explicit specification of
the parameter in m(◊) until Section 3.1.

If the software is busy processing a transaction, arriving
customers are queued. Total number of transactions that
the software can accommodate is K (including the one be-
ing processed) and any more arriving when the queue is
full are lost. The service discipline is FCFS. This state, in
which the software is available for service (albeit with de-
creasing service rate), is denoted as state “A” (see Fig. 1).

Further, the software can fail, upon which, recovery pro-
cedure is started. This state, in which the software is recov-
ering and is unavailable for service, is denoted as state “B.”
The rate at which it fails, i.e., at which the software moves
from state A to state B, is denoted by r(◊). Let the time to
failure be denoted by random variable X. Then, its distri-
bution is given by

F t eX

dt
t

0 5
0 5

= -
- ◊I1 0

r
.

Like m(◊), r(◊) can also be function of time, instantaneous load,
mean accumulated load, or a combination of the above. Ex-
plicit specification of r(◊) is deferred until Section 3.1.

The effect of aging, therefore, may be captured by using
decreasing service rate and increasing failure rate, where
the decrease or the increase, respectively, can be a function
of time, instantaneous load, mean accumulated load, or a
combination of the above. The service degradation and
hang/crash failures in our model are assumed to be sto-
chastically independent processes. Their interdependence,
if it exists in the real system, can be modeled by using
parametric dependence in the definitions of r(◊) and m(◊).
The failure process is stochastically independent of the ar-

rival process and any transactions in the queue at the time
of failure are assumed to be lost. Moreover, any transac-
tions which arrive while recovery is in progress are also
lost. We note that our assumptions regarding the loss of
transactions may not hold true for database systems with
logging capabilities. However, they are true for a large class
of software systems providing real-time services. The most
notable example is a web server. Requests arriving to such
software systems are typically assumed to be of equal criti-
cality. Time to recover from a failed state is denoted by Yf

with associated general distribution FYf
.

Last, the software occasionally undergoes PM. This state
is denoted as state “C.” PM is allowed only from state “A.”
We consider two different policies which determine the
time to perform PM.

1) Purely time based. Under this policy, henceforth referred
to as Policy I, PM is initiated after a constant time d has
elapsed since it was started (or restarted). We shall re-
fer to d under this policy as the PM interval.

2) Instantaneous load and time based. Under this policy,
henceforth referred to as Policy II, a constant waiting
period d must elapse before PM is attempted. Further,
after this time, PM is initiated if and only if there are
no transactions in the system. d under this policy shall
be referred to as PM wait. The actual PM interval un-
der Policy II is determined by the sum of PM wait
and the time it takes for the queue to get empty from
that point onward. The latter quantity is dependent
on system parameters and cannot be controlled. The
actual PM interval, therefore has a range [d, •).

Regardless of the policy used, it takes a random amount
of time, denoted by Yr, to perform PM. Let FYr

 be its distri-

bution. As will be shown in the following section, our
model does not require any assumptions on the nature of
FYf

 and FYr
. Only the respective expectations, gf = E[Yf] and

gr = E[Yr] are assumed to be finite.
Once recovery from the failed state or PM is complete,

the software is reset in state A and is as good as new. From
this moment, which constitutes a renewal, the whole proc-
ess stochastically repeats itself. The transition behavior of
the software among states A, B, and C is illustrated in Fig. 1.

The queuing behavior of the software, on the other hand,
as determined by the two PM policies, is illustrated in
Fig. 2. The horizontal axis represents time t and the vertical
axis represents the number of transactions queued in the
software at time t, denoted by N(t). Fig. 2a shows a sample
path in which PM is initiated as soon constant time d
elapses. In accordance with Policy I, the transactions al-
ready in the queue at time d are lost.

Fig. 2b illustrates Policy II where, at time d, some trans-
actions are in the queue, i.e., N(d) > 0. In this case, the soft-
ware waits until the queue is empty, upon which, PM is
initiated.3 This wait is a random quantity, denoted in the

3. A generalization of Policy II in which, after time d, PM is initiated if
and only if the number of transactions in the queue goes below a certain
threshold can easily be accommodated in our model.

Fig. 1. Macro-states representation of the software behavior.

100 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 1, JANUARY 1998

figure by B. Intuitively, if B is very large, it is likely that the
software will fail before it has a chance to undergo PM.

3.1 How to Capture Aging?
The effects of aging, i.e., degradation in performance and
failures causing unavailability, are present in varying se-
verity in different systems. Further, each of them may be
influenced by different operating parameters in different
software systems. We now show how, in our model, the
varying severity and dependencies may be captured via
proper choice of parameters of m(◊) and r(◊). Flexibility in
this choice in the same framework widens the scope of ap-
plicability of our model to real software systems.

• m(◊) = m and r(◊) = r.
 In the simplest case, the service rate, as well as the

failure rate, are constants. This implies that there is no
performance degradation and the time to failure is
exponentially distributed, which, because of its mem-
oryless property, contradicts aging. Therefore, con-
stants m and r do not capture the behavior of a soft-
ware system which ages. This case will not be dis-
cussed further.

• m(◊) = m(t) and r(◊) = r(t)
In this case, the service rate and the failure rates are
simply functions of time. Although arbitrary func-
tions are allowed in the model, presumably, service
rate will be a monotone nonincreasing function and
the failure rate will be a monotone nondecreasing
function of time in a software which ages. If

r(t) = bata-1,

where b and a are constants with a > 1, the time to
failure has Weibull distribution with increasing failure
rate, which is commonly used to model aging. To
model software systems where only occasional failures
are witnessed, with no performance degradation, the
combination m(◊) = m and r(◊) = r(t) may be used. Fur-
ther, to model software systems which undergo per-
formance degradation, but are always available, the
special case of r(◊) = r = 0 and m(◊) = m(t) can be used.

• m(◊) = m(N(t)) and r(◊) = r(N(t))
 The service rate and the failure rate are functions of

instantaneous load on the system, i.e., their value at
time t depends on the number of transactions in the
queue at that time. This dependence is useful in cap-
turing overload effects which especially influence the
failure behavior. Of course, more realistic dependence
on time, as well as instantaneous load, m(◊) = m(t, N(t))
and r(◊) = r(t, N(t)), is also allowed.

• m(◊) = m(L(t)) and r(◊) = r(L(t))
A more complex, but also more powerful, depend-
ence can be obtained by making r(◊) and m(◊) as func-
tions of mean accumulated work done by the soft-
ware system in a given time interval. Let pi(t), 0 £ i £ K
be the probability that there are i transactions in the
queue at time t, given that the software is in state “A.”
When the software is not aged, incoming transactions
are promptly served and the total amount of time
spent in actual processing in an interval (0, t] is usu-
ally less than the interval t itself. Since an idle soft-
ware is not likely to age, service and failure rates are,
more realistically, a function of the actual processing
time rather than the total available time. Let L(t) be
defined as:

L t c p di i
i

t
0 5 0 5= ÂI =

t t
t 0

,

where ci is a coefficient which expresses how being in
state i influences the degradation of the overall system.
If c0 = 0 and ci = 1 for i > 0, then L(t) represents the av-
erage amount of time the software is busy processing
transactions in the interval (0, t]. If ci = 1 for i ≥ 0, then
L(t) = t given that the software is available.

Last, our model allows for combination of the
above dependencies. For example, the failure rate
may be a function of not only the mean processing
time in the interval (0, t], but also of the instantaneous
load at time t to account for overload effects. In this
case, r(◊) = r(N(t), L(t)).

In the following section, we derive the three measures
for the two PM policies. Table 2 lists the notation used in
the rest of the paper. (R.V. denotes random variable.)

4 EVALUATION OF MEASURES

Let the steady state availability of the software system be
denoted by ASS. Let Ploss denote the long run probability
that an arriving transaction will be lost and let Tres denote
the expected response time of a transaction, given that it is
successfully served. The approach we follow in deriving the
expressions for the three measures applies to both policies I
and II. Only when a particular expression is different will it
will be noted explicitly. The solution method, in general, and
the class of stochastic process used to model, in particular,
provide an elegant, concise, and fast alternative to usually
expensive discrete-event simulation approach.

As described in the previous section, the software can be
in any one of three states at any time t. It can be up and
available for service (state A), recovering from a failure
(state B), or undergoing PM (state C) (see Fig. 1). Let {Z(t), t

Fig. 2. Sample path of the process.

GARG ET AL.: ANALYSIS OF PREVENTIVE MAINTENANCE IN TRANSACTIONS BASED SOFTWARE SYSTEMS 101

≥ 0} be a stochastic process which represents the state of the
software at time t. Further, let the sequence of random vari-
ables Si, i > 0, represent the times at which transitions
among different states take place. Then, {Z(Si), i > 0} is an
embedded discrete time Markov chain (DTMC), since the
entrance times Si constitute renewal points. The transition
probability matrix P for this DTMC can be easily derived
from the state transition diagram shown in Fig. 1 and is
given by:

P
P PAB AC

=
�

�
��

�

�
��

0
1 0 0
1 0 0

. (1)

The steady state probability of the software being in state i,
i Œ {A, B, C}, denoted by pi, can also be determined in a
straightforward manner from the well know relation p = pP.
These probabilities are given by;

p

p

A

B ABP

=

=

1
2
1
2

p C ACP=
1
2 . (2)

The software behavior, as a whole, is modeled via the
stochastic process {(Z(t), N(t)), t ≥ 0} . If Z(t) = A, then N(t) Œ
{0, 1, º, K}, as the software queue can accommodate up to
K transactions. If Z(t) Œ {B, C}, then N(t) = 0, since, by as-
sumption, all transactions arriving while the software is
either recovering or undergoing PM are lost. Further, the
transactions already in the queue at the transition instant are
also discarded. It can be shown that the process {(Z(t), N(t)),
t ≥ 0} is a Markov regenerative process (MRGP) [6]. The
regeneration instants are embedded at times when the
process makes transitions from state i to state j (i, j Œ {A, B, C}),
i.e., when Z(t) changes. Transition to state A from either B
or C constitutes a regeneration instant since, by assumption,
the software is reset to the original initial conditions. At
these instants, the system is empty and the software is as
good as new. Note that what makes the process an MRGP
is the fact that, within one regeneration period, the stochas-
tic process changes state. In other words, arrivals and de-
partures of transactions keep changing N(t) while Z(t) = A.

We have already defined and solved the embedded DTMC
of this MRGP in (1) and (3), respectively.

Let U be an R.V. denoting the sojourn time of {(Z(t), N(t)),
t > 0} in state A. Let E[U] denote its expectation. Expected
sojourn times of the MRGP in states B and C are already
defined to be given by gf and gr. The steady state availabil-
ity can then be obtained using standard formulae from
MRGP theory [6] and is given as:

A software is in state A
E U

E USS
A

B f C r A
= =

+ +
Pr< A

p
p g p g p

.

Substituting the values of pA, pB, and pC:

A
E U

P P E USS
AB f AC r

=
+ +g g

. (3)

The probability that a transaction is lost is defined as the
ratio of expected number of transactions which are lost in
an interval to the expected total number of transactions which
arrive during that interval. The evolution of {Z(t), N(t)), t > 0},
in the intervals comprised of successive visits to state A, is
stochastically identical. Therefore, for calculation of long
run measures, it suffices to consider just one such interval.
The expected number of transactions lost is given by the
summation of three quantities;

1) the expected number lost due to discarding because
of failure or initiation of PM,

2) the expected number lost while recovery or PM is in
progress, and

3) the expected number lost due to the buffer being full.

The last quantity is of special significance as,due to the de-
grading service rate, the probability of the buffer being full
increases.

The probability of loss is then given by:

P
E N p t dt

E U
loss

A l B f C r A K

B f C r A

=
+ + +�

�
�
�

+ +

•Ip l p g p g p

l p g p g p

0 5

4 9
0

=
+ + +�

�
�
�

+ +

•IE N P P p t dt

P P E U

l AB f AC r K

AB f AC r

l g g

l g g

0 5

4 9
0

, (4)

TABLE 2
NOTATION

PAB Transition probability from state A (Available) to state B (Recovering)

PAC Transition probability from state A (Available) to state C (Undergoing PM)

pi(t) Probability that i transactions are queued at time t,

Nl Number of transactions lost at the end of the available period (R.V.)

gf Expected time to recover from failure

gr Expected time to perform PM

U Sojourn time in state A (R.V.)

l Transaction arrival rate

m(◊) Transaction service rate

r(◊) Failure rate

N(t) Number of transaction in the queue at time t

L(t) Mean processing time since the last renewal

102 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 1, JANUARY 1998

where:

• E[Nl] is the expected number of transactions in the
buffer when the system is exiting state A;

• lgf is the expected number of transactions arriving
while the system is recovering;

• lgr is the expected number of transactions arriving
while the system is undergoing PM;

• l p t dtK ()
0

•

I is the expected number of transactions

denied service because of the buffer being full while
the system is in state A;

• (pBgf + pCgr + pAE[U]) is the average length of time
between two consecutive visits to state A.

Equation (4) is valid only for policy II. Under policy I the

upper limit in the integral p t dtK ()
0

•

I is d instead of •. This

is because the sojourn time in state A is limited by d under
policy I.

We now derive an upper bound on the mean response
time of a transaction given that it is successfully served,
denoted by Tres. The mean number of transactions, denoted
by E, which are accepted for service while the software is in
state A, is given by the mean total number of transactions
which arrive while the software is in state A minus the
mean number of transactions which are not accepted due to
the buffer being full. That is,

E E U p t dtKt
= -�
�

�
�=

•

Il 0 5
0

.

Out of these transactions, on the average, E[Nl] are dis-
carded later because of failure and initiation of PM. There-
fore, the mean number of transactions which actually re-
ceive service, given that they were accepted, is given by E -
E[Nl]. The mean total amount of time the transactions spent
in the system while the software is in state A is:

W ip t dti
i

t
= ÂI =

•
0 5

0
.

This time is composed of the mean time spent by the trans-
actions which were served, as well as those which were
discarded, denoted as WS and WD, respectively; therefore,
W = WS + WD. The response time we are interested in is
given by

T
W

E E Nres
S

l

=
-

,

which is upper bounded by4

T
W

E E Nres
l

<
-

. (5)

Regardless of the PM policy, as can be observed from (3)
and (4), we need to obtain expected sojourn times and the
steady state probability of the software in each of the three
states A, B, and C, as well as the transient probability that
there are i, i = 0, 1, º, K transactions queued up for service.
It is the last quantity which forbids a closed form analytical
solution and necessitates a numerical approach.

4. W
E E Nl- [] tends to

W
E E N

S

l- [] as
E N

E
l[]

 tends to zero.

The mean sojourn time in states B and C is already avail-
able as gf and gr, respectively.5 The quantities still to be de-
rived are related with the queuing behavior of the software
in state A, viz., PAB, PAC, E[U], and pi(t), i = 0, 1, º, K. Their
evaluation depends on the policy used.

4.1 Behavior of the System in State A Under Policy I
For Z(t) = A, the subordinated process, i.e., the process until
a regeneration occurs, is determined by the queuing be-
havior of the software processing transactions. The process
is terminated by either a failure (which can happen at any
time) or by initiating PM, which, under policy I, happens at
time d if the software has not failed by that time. Fig. 3
shows the state diagram of the subordinated nonhomoge-
neous process under policy I. It is a birth-death process
augmented with one absorbing state associated with each
state of the birth-death process. Not included in the figure
is the fact that, at t = d, the subordinated process is termi-
nated if it was not terminated before by a transition to an
absorbing state (0¢, º, K¢).

By our notation, pi(t) is the probability that there are i
transactions queued for service, which is also the probabil-
ity of being in state i of the subordinated process at time t.
Note that state i, i = 0, 1, º, K is not to be confused with
state i¢, i = 0, 1, º, K, which was defined just to be able to
evaluate the quantities of interest. As such, all the states
under the shaded area of the process can be lumped into a
single absorbing state.

pi(t), i = 0, 1, º, K and pi¢(t), i¢ = 0¢, 1¢, º, K¢ can be ob-
tained by solving the following system of forward differen-
tial-difference equations:

dp t
dt p t p t

dp t
dt p t p t p t

i K

dp t
dt p t p t

i
i i i

K
K K

0
1 0

1 1

1

1

0 5
0 5 0 5 0 52 7 0 5

0 5
0 5 0 5 0 5 0 5 0 52 7 0 5

0 5
0 5 0 5 0 52 7 0 5

= ◊ - + ◊

= ◊ + - ◊ + + ◊

£ <

= - ◊ + ◊

+ -

-

m l r

m l m l r

l m r

,

dp t
dt p t i Ki

i
¢ = ◊ £ £
0 5

0 5 0 5r , 0 . (6)

m(◊) and r(◊) can have any of the forms described in Sec-
tion 3.1. If m(◊) = m(t) or m(N(t)) and r(◊) = r(t) or r(N(t)), no
other changes, except for plugging in the proper values, is
necessary. For m(◊) = m(L(t)) and r(◊) = r(L(t)), where L(t) is
defined by

5. The measures evaluated in this paper require only the first moments of
Yf and Yr and, hence, no assumptions on the nature of their distribution is
made.

Fig. 3. Subordinated nonhomogeneous CTMC for t £ d.

GARG ET AL.: ANALYSIS OF PREVENTIVE MAINTENANCE IN TRANSACTIONS BASED SOFTWARE SYSTEMS 103

L t c p di i
i

t
0 5 0 5= ÂI =

t t
t 0

,

the set of ODEs is first augmented by the following differ-
ential equation:

dL t
dt c p ti i

i

0 5
0 5= Â

and then solved.
The set of simultaneous differential-difference equations

given by (6) do not, in general, have a closed-form analyti-
cal solution and must be evaluated numerically, along with
the initial conditions p0(0) = 1, pi(0) = 0, 1 £ i £ K, and pi¢(0) = 0,
0¢ £ i¢ £ K¢. Once these probabilities are obtained, the rest of
the quantities can be computed as follows:

One step transition probability PAB is given by:

P pAB i
i

K

=
= ¢

¢

Â d1 6
0

and

PAC = 1 - PAB.

Thereafter, according to (3), the steady state probability that
the software is in states B and C can be obtained.

The expected sojourn time in state A is given by:

E U p t dti
i

K

t
=

�

�
�

�

�
�

=
= ÂI 0 5

0
0

d
,

where the upper limit on the integral indicates that the so-
journ time is bounded by d. The average value, E[Nl], of the
number of transactions already in the system at the time
when state A is left, is evaluated as:

E N i p pl i i
i

K

= + ¢
=
Â d d1 6 1 62 7

0

.

ASS, Ploss, and the upper bound on Tres, as given in (3), (4),
and (5), respectively, can now be easily calculated.

4.2 Behavior of the System in State A Under Policy II
If policy II is assumed, the evolution of the system in state
A is somewhat more complex. In this case, we need to dis-
tinguish between t £ d and t > d, as policy II assumes that
PM will be initiated if and only if the buffer is empty after
time d has elapsed. For t £ d, exactly the same process of
Fig. 3 determines the behavior of the software. For t > d, the
process which models the behavior is shown in Fig. 4. As
can be observed, state 0 now belongs to the set of absorbing
states, because PM will be initiated once the system be-
comes idle, thus terminating the subordinated process,

The set of forward differential-difference equations
which are solved to determine all transient probabilities are
given as follows:

dp t
dt p t t p t

dp t
dt p t t p t p t

dp t
dt p t p t p t

i K

dp t
dt p t p t

dp t
dt p

i
i i i

K
K K

0
1 0

1
2 0 1

1 1

1

0
0

2

0 5
0 5 0 5 0 5 0 52 7 0 5

0 5
0 5 0 5 0 5 0 5 0 5 0 52 7 0 5

0 5
0 5 0 5 0 5 0 5 0 52 7 0 5

0 5
0 5 0 5 0 52 7 0 5

0 5
0 5

= - ¢ +

= + ¢ - + +

= + - + +

£ <

= - +

= ¢

+ -

-

¢

m l r

m l m l r

m l m l r

l m r

r

. .

. . . ,

. . . ,

. .

. t0 5

dp t
dt p t i Ki

i
¢ = £ £
0 5

0 5 0 5r . , 1 , (7)

where l¢(t) = l, if t £ d; otherwise, it is zero. Similarly, r¢(.) =
r(.), if t £ d; otherwise, zero. As before, m(◊) and r(◊) can be
functions of t, N(t), or L(t), where, in the last case, the set of
ODEs must be augmented with

dL t
dt c p ti i

i

0 5
0 5= Â

and then solved. This set of differential-difference equa-
tions, along with the initial condition p0(0) = 1, also requires
numerical solution.

On step transition probability PAB is computed by solv-
ing the system of ODEs at t = • and is given as:

P pAB i
i

K

= •
= ¢

¢

Â 0 5
0

.

Then
PAC = 1 - PAB= p0(•).

The mean sojourn time in state A is now given by:

E U p t dt p t dt

p t dt p t dt

i
i

K

t i
i

K

t

t i
i

K

t

=
�

�
�

�

�
� +

�

�
�

�

�
�

= +
�

�
�

�

�
�

=
=

=
=

•

=
=

=

•

ÂI ÂI

I ÂI

0 5 0 5

0 5 0 5

0
0

1

00
1

0

d

d

d
.

The mean number of transactions already in the queue
the State A is exited is given by:

E N ipl i
i

K

= •¢
=
Â 0 5

0

.

Using (3), (4), and (5), the steady state availability, the prob-
ability of loss of an arriving transaction, and the upper bound
on the response time of a transaction can now be calculated.

Fig. 4. Subordinated nonhomogeneous CTMC if t > d.

104 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 1, JANUARY 1998

5 NUMERICAL EXAMPLES

In this section, we illustrate the usefulness of the models
developed to evaluate ASS, Ploss, and the upper bound on
Tres. The models are solved for multiple values of d (PM
interval in the case of policy I and PM wait in the case of
policy II) and optimal values are determined. We also show
how the optimum value of d may be selected based on
combined measures of the above three quantities.

Table 3 shows the parameter values that were kept fixed
for all results. The values chosen are for illustration purposes
only and do not necessarily represent any physical system.

The set of differential-difference equations given in (6)
and (8) for policies I and II, respectively, were numerically
solved using the LSODE routine in ANSI FORTRAN.
LSODE (Livermore Solver for Differential Equations) is an
ODE solver which uses Backward Differentiation Formula
(BDF) methods for stiff systems of ODEs. It is publicly
available as part of ODEPACK from netlib. A single run
of the model takes less than a minute. A solution using
commercially available packages like Mathematica or
MATLAB is also possible, but is likely to be much slower.
For large buffer sizes of the order of thousands, sparse ma-
trix methods will need to be used in the ODE solution.

5.1 Experiment 1
In this experiment, gr is varied to ascertain the effect on the
measures and on optimal d. Service rate and failure rate are
assumed to be functions of real time, i.e., m(◊) = m(t) and r(◊) =
r(t), where r(t) is defined to be

r(t) = bata-1,

which is the hazard function of Weibull distribution. a is
fixed at 1.5 and b is calculated from the MTTF and a as

b a

a

=
+�

!

"

$
#
#

G 1 12 7
MTTF . (8)

The model is solved for both policies to show the effect of the
cost of PM on the three measures. m(t) is defined to be a
monotone nonincreasing function of t, as shown in Fig. 5. This
behavior of m(t) has been given in [3] as an approximation to
service degradation in telecommunications switching software.

mmax is fixed at 15 hour-1 and mmin at 5 hour-1 for all the
experiments in the paper. For this particular experiment of
varying gr, m(t) (as shown in Fig. 5) is defined as:

m m
m

t t a
t a

t
MTTF0 5 = - £

>
%
&
'

max

min

1 ,
, ,

if
if

where

a MTTF=
-m m

m
max min

max

2 7
.

The use of common parameter MTTF in the definitions of
m(t) and r(t) is simply to illustrate how dependence in the
service and failure behavior can be captured via parameter
sharing, even though, stochastically, the two processes are
assumed to be independent.

In the numerical evaluation of the measures, computation
at time • is required, which is approximated by respective
values at time tMAX, where tMAX is associated with the re-
quired precision parameter (e) by the following expression:

F t p t dtX MAX i
i

tMAX2 7 0 5= = -ÂI0
1 e .

Fig. 6a shows Ass plotted against different values of d for
both PM policies I and II.

Further, for each policy, gr was assigned values of 0.15,
0.35, 0.55, and 0.85 hours. As noted already, the expected
downtime due to a failure is kept fixed at 0.85 hours. Under
both policies, it can be seen that higher the value of gr,
lower is the availability for any particular value of d. Under
policy I, for gr = 0.15 and gr = 0.35, the availability rapidly
increases with increase in d (that is, PM is performed less
frequently), attains a maximum at d = 160 and d = 410, re-
spectively, and then gradually decreases. For gr = 0.55 and
gr = 0.85, the steady state availability turned out to be a
monotone function. In all cases, Ass eventually approaches
the same value with increase in d which corresponds to the
steady state availability if no PM was performed. Therefore,
for gr = 0.55 and gr = 0.85, it is better not to perform PM if
the objective is only to maximize availability. Under policy II,
the steady state availability follows the same behavior as in
policy I, except that the value of Ass corresponding to the no
PM case is reached at much lower values of d, which now
represents PM wait, rather than the PM interval.

Fig. 6b shows the plots of Ploss against d for both policies,
with gr being assigned values as in Fig. 6a. All the plots at-
tain a minimum. As expected, for any specific value of d
and a specific policy, the higher the value of gr is, the higher
the corresponding loss probability is, because, on average,
more transactions are denied service while PM is in prog-
ress. Since the absolute values of the measures or of optimal
d are not of importance, we shall comment on the relative
effects only. It can be seen that, for any specific policy, the
lower the value of gr, the lower the value of d which mini-
mizes the probability of loss for that particular gr is. For any
specific value of gr, policy II results in a lower minima in loss
probability than that achieved under policy I. Moreover, this
minima under policy II is achieved at a lower d as compared

TABLE 3
MODEL PARAMETERS

gf 0.85 (hours)

l 6.0 (hours
-1

)

K 50

MTTF 240 (hours)

Fig. 5. Time variation of the service rate m(t).

GARG ET AL.: ANALYSIS OF PREVENTIVE MAINTENANCE IN TRANSACTIONS BASED SOFTWARE SYSTEMS 105

to policy I. This clearly shows that if the objective is to
minimize long run probability of loss, which is the case is
telecommunication switching software, policy II always
fares better than policy I. It can also be observed, from
Fig. 6a and 6b, that the value of d which minimizes prob-
ability of loss is much lower than the one which maximizes
availability. In fact, the probability of loss becomes very
high at values of d which maximize availability. Although
the behavior is dependent on system parameter values,
caution in proper selection of d is indicated.

5.2 Experiment 2
In this experiment, gr is fixed at 0.15. m(◊) = m(t) and has ex-
actly the same definition as in Experiment 1, r(◊) = r(t), with
previously defined Weibull hazard rate, except that the
shape parameter a is now varied. Thus, for each value of a,
corresponding b is calculated using (8), keeping MTTF
fixed at 240 hours. In effect, we are interested in studying
how the measures and the optimality vary as the failure
density gets peakier with the same mean time to failure. a
is assigned values of 1.0, 1.5, and 2.0, respectively.

Fig. 7a shows the steady state availability under the two
policies plotted against d for different values of a.

For a = 1.0, the time to failure has an exponential distri-
bution, which, because of its memoryless property, contra-
dicts aging. As seen from the figure, it is better not to per-

form PM in this case if the objective is to maximize avail-
ability. For the other two values of a, however, PM maxi-
mizes availability at certain d. For a specific policy, the
peakier the failure density, i.e., higher the value of a, the
higher is the maximum steady state availability. Also, with
higher values a, this maxima occurs at lower values of d.
Fig. 7b shows the long run probability of loss of a transac-
tion plotted against d. In this case, PM proves to be beneficial
for all three values of a. Similar observations and arguments
as those given in Experiment 1 also hold for this case.

5.3 Experiment 3
The purpose of this experiment is to illustrate the effect of
assumptions on m(◊) and r(◊) on the three measures. Figs. 8a,
8b, and 8c show steady state availability, probability of loss,
and the upper bound on the mean response time of trans-
actions successfully served plotted against d under policy I.

Each of the figures contains three curves. The solid curve
represents a system, where m(◊) = m(t) and r(◊) = r(t). The dot-
ted curve represents a second system, where m(◊) = m(L(t)) and
r(◊) = r(L(t)). The parameters, mmax, mmin, and a are kept the
same. Similarly, a is kept at 1.5 for both the solid, as well as the
dotted, curve. In other words, m(◊) and r(◊) in the solid curve
are functions of real time, whereas, in the dotted curve, they
are functions (with the same parameters) of the mean total
processing time. The dashed curve represents a third system in

(a) (b)

Fig. 6. Results for experiment 1.

(a) (b)

Fig. 7. Results for experiment 2.

106 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 1, JANUARY 1998

which no crash/hang failures occur, i.e., r(◊) = 0, but service
degradation is present with m(◊) = m(t) with the same parame-
ters as for m(◊) of the earlier two systems. gr for all is kept fixed
at 0.15. This experiment only illustrates the importance of
making the right assumptions in capturing aging because, as
seen from the figure, depending on the forms chosen for m(◊)
and r(◊), the measures vary in a wide range.

Fig. 8 plots the upper bound on the mean response time.
This was not shown for Experiments 1 and 2 because of its
monotone nature. In the type of system under consideration,
where queued transactions, as well as those arriving during
recovery or PM, are lost, response time of successful transac-
tions can be trivially minimized by always keeping the soft-
ware unavailable (with very low d). This, however, will result
in unacceptable values of the probability of loss and steady
state availability. In many systems, for example, ATM
switches, QOS requirements are specified using bounds on
response time as well as probability of loss. This can be
achieved via our model. For example, consider the solid
curve in Fig. 8c. If QOS demands that the response time be
less than 0.113 hours, d is restricted approximately in the in-
terval (0, 70]. Now, if the QOS further demands that the
probability of loss be minimized, the optimal d corresponds
to the minimum Ploss within this interval only. The curve
identified with the legend (I, 1.5) in Fig. 7b plots Ploss against d
with exactly the same parameter values and it is seen that
global minima for Ploss occurs at d = 85, whereas the optimal d
for the combined QOS is 70. Fig. 8b shows that the loss prob-
ability for no failure case is greater for the “no failure” case
for higher values of d. The reason is that the loss due to the
buffer being full increases due to service degradation and a
larger rejuvenation interval. In the other two cases, although
a failure results in the loss of queued transactions, it also re-
stores the service rate to the peak value, thereby reducing the
overall probability of the buffer being full.

6 CONCLUSION

In this paper, we motivated the need for pursuing preventive
maintenance in operational software systems on a scientific
analytical basis rather than the current ad hoc practice. We
presented a model for a transactions based software system
which employs preventive maintenance to maximize avail-
ability, minimize probability of loss, minimize response time,
or optimize a combined measure. We evaluated the three
measures for two different preventive maintenance policies
and showed via numerical examples that a policy which takes

into account instantaneous load on the system results in lower
optimum probability of loss. The effect of aging is captured as
crash/hang failures, as well as performance degradation. Sys-
tems which experience only one of the two can be modeled as
special cases. The main strength of our model, however, is its
capability of capturing the dependence of crash/hang failures
and performance degradation on time, instantaneous load,
mean accumulated load, or a combination thereof. This, in our
opinion, provides great flexibility in modeling real situations
and widens the scope of applicability of our model. The main
limitation, on the other hand, is that it is applicable to only
those software systems in which incoming transactions are lost
when either it fails or when PM in initiated. In many database
systems which support recovery, transactions are logged
when they arrive. Even when failure occurs, the log is not lost,
thus violating our assumption.

ACKNOWLEDGMENT

This work was done while Sachin Garg was a graduate stu-
dent in the Department of Electrical and Computer Engi-
neering at Duke University, Durham, North Carolina.

REFERENCES

[1] E. Adams, “Optimizing Preventive Service of the Software Products,”
IBM J. Research and Development, vol. 28, no. 1, pp. 2-14, Jan. 1984.

[2] A. Avizienis, “The n-Verion Approach to Fault-Tolerant Soft-
ware,” IEEE Trans. Software Eng., vol. 11, no. 12, pp. 1,491-1,501,
Dec. 1985.

[3] A. Avritzer and E.J. Weyuker, “Monitoring Smoothly Degrading
Systems for Increased Dependability,” submitted for publication.

[4] L. Bernstein, Text of seminar delivered at the Univ. Learning
Center, George Mason Univ., Jan. 29, 1996.

[5] R. Chillarege, S. Biyani, and J. Rosenthal, “Measurements of Fail-
ure Rate in Commercial Software,” Proc. 25th Symp. Fault Tolerant
Computing, June 1995.

[6] E. Cinlar, Introduction to Stochastic Processes. Englewood Cliffs,
N.J.: Prentice Hall, 1975.

[7] G.F. Clement and P.K. Giloth, “Evolution of Fault Tolerant
Switching Systems in AT&T,” The Evolution of Fault-Tolerant Com-
puting, Dependable Computing and Fault-Tolerant Systems, A. Avi-
zienis, H. Kopetz, J. C. Laprie, eds., vol. 1, pp. 37-53. Springer-
Verlag, 1987.

[8] S. Garg, A. Puliafito, M. Telek, and K.S. Trivedi, “Analysis of
Software Rejuvenation Using Markov Regenerative Stochastic
Petri Net,” Proc. Sixth Int’l. Symp. Software Reliability Eng., pp. 24-
27, Toulouse, France, Oct. 1995.

[9] S. Garg, Y. Huang, C. Kintala, and K.S. Trivedi, “Time and Load
Based Software Rejuvenation: Policy, Evaluation and Optimality,”
Proc. First Fault-Tolerant Symp., Madras, India, Dec. 22-25, 1995.

 (a) (b) (c)

Fig. 8. Results for experiment 3.

GARG ET AL.: ANALYSIS OF PREVENTIVE MAINTENANCE IN TRANSACTIONS BASED SOFTWARE SYSTEMS 107

[10] S. Garg, Y. Huang, C. Kintala, and K.S. Trivedi, “Minimizing
Completion Time of a Program by Checkpointing and Rejuvena-
tion,” Proc. 1996 ACM SIGMETRICS Conf., pp. 252-261, Philadel-
phia, May 1996.

[11] J. Gray and D.P. Siewiorek, “High-Availability Computer Sys-
tems,” Computer, pp. 39-48, Sept. 1991.

[12] J. Gray, “Why Do Computers Stop and What Can Be Done About
It?” Proc. Fifth Symp. Reliability in Distributed Software and Database
Systems, pp. 3-12, Jan. 1986.

[13] J. Gray, “A Census of Tandem System Availability Between 1985
and 1990,” IEEE Trans. Reliability, vol. 39, pp. 409-418, Oct. 1990.

[14] B.O.A. Grey, “Making SDI Software Reliable Through Fault-
Tolerant Techniques” Defense Electronics, pp. 77-80, 85-86, Aug. 1987.

[15] Y. Huang, P. Jalote, and C. Kintala, “Two Techniques for Tran-
sient Software Error Recovery,” Lecture Notes in Computer Science,
vol. 774, pp. 159-170. Springer Verlag, 1994.

[16] Y. Huang, C. Kintala, N. Kolettis, and N.D. Fulton, “Software
Rejuvenation: Analysis, Module and Applications,” Proc. 25th
Symp. Fault Tolerant Computing, Pasadena, Calif., June 1995.

[17] R.K. Iyer and I. Lee, “Software Fault Tolerance in Computer Op-
erating Systems,” Software Fault Tolerance, M.R. Lyu, ed. John
Wiley and Sons Ltd., 1995.

[18] P. Jalote, Y. Huang, and C. Kintala, “A Framework for Understanding
and Handling Transient Software Failures,” Proc. Second ISSAT Int’l.
Conf. Reliability and Quality in Design, Orlando, Fla., 1995.

[19] J.C. Laprie, J. Arlat, C. B‘eounes, K. Kanoun, and C. Hourtolle,
“Hardware and Software Fault Tolerance: Definition and Analy-
sis of Architectural Solutions,” Digest 17th FTCS, pp. 116-121,
Pittsburgh, Penn., 1987.

[20] J-C. Laprie, J. Arlat, C. B’eounes, and K. Kanoun, “Architectural
Issues in Software Fault-Tolerance,” Software Fault Tolerance, M.R.
Lyu, ed., pp. 47-80. John Wiley & Sons. Ltd., 1995.

[21] E. Marshall, “Fatal Error: How Patriot Overlooked a Scud,” Sci-
ence, p. 1,347, Mar. 13, 1992.

[22] A. Pfening, S. Garg, A. Puliafito, M. Telek, and K.S. Trivedi,
“Optimal Rejuvenation for Tolerating Soft Failures,” Performance
Evaluation, vols. 27/28, pp. 491-506, Oct. 1996.

[23] B. Randell, “System Structure for Software Fault Tolerance,” IEEE
Trans. Software Eng., vol. 1, pp. 220-232, June 1975.

[24] M. Sullivan and R. Chillarege, “Software Defects and Their Impact
on System Availability—A Study of Field Failures in Operating
Systems,” Proc. IEEE Fault-Tolerant Computing Symp., pp. 2-9, 1991.

[25] J.J. Stiffler, “Fault-Tolerant Architectures—Past, Present and Fu-
ture,” Lecture Notes in Computer Science, vol. 774, pp. 117-121. Ber-
lin: Springer Verlag, 1994.

[26] A. Tai, S.N. Chau, L. Alkalaj, and H. Hecht, “On-Board Preven-
tive Maintenance: Analysis of Effectiveness and Optimal Duty Pe-
riod,” Proc. Third Int’l Workshop Object-Oriented Real-time Depend-
able Systems, Feb. 1997.

[27] Y.M. Wang, Y. Huang, and W.K. Fuchs, “Progressive Retry for
Software Error Recovery in Distributed Systems,” Proc. IEEE Fault
Tolerant Computing Symp., pp. 138-144, June 1993.

Sachin Garg received the BE degree in elec-
tronics engineering from REC, Bhopal, India, in
1991, the MS degree in computer science from
Washington University, St. Louis, Missouri, in
1993, and the PhD degree in electrical and com-
puter engineering from Duke University, Durham,
North Carolina, in 1997. He was awarded the
IBM graduate fellowship twice during 1995-1997.

Dr. Garg is a member of the technical staff at
Lucent Technologies, Bell Laboratories, in Mur-
ray Hill, New Jersey. His research interests are

in distributed systems management, fault tolerance, and performance
and reliability evaluation.

Antonio Puliafito received the electrical engineer-
ing degree in 1988 from the University of Catania,
Italy, and the PhD degree in computer engineering
in 1993 from the University of Palermo, Italy. Since
1988, he has been engaged in research on parallel
and distributed systems with the Institute of Com-
puter Science and Telecommunications of Catania
University, where he is currently an assistant pro-
fessor of computer engineering. His research inter-
ests include performance and reliability modeling of
parallel and distributed systems, networking, and

multimedia. During 1994-1995, he spent 12 months as a visiting professor
in the Department of Electrical Engineering at Duke University, Durham,
North Carolina, where he was involved in research on advanced analytical
modeling techniques. Dr. Puliafito is coauthor (with R. Sahner and Kishor
S. Trivedi) of the text Performance and Reliability Analysis of Computer
Systems: An Example-Based Approach Using the SHARPE Software
Package, published by Kluwer Academic Publishers.

Miklós Telek received the electrical engineering
degree from the Technical University of Budapest in
1987 and the CSC/PhD degree from the Hungarian
Academy of Science in 1995. From 1987 to 1989,
he was with the Hungarian Post Research Institute,
where he studied the modeling, analysis, and plan-
ning aspects of communication networks. Since
1990, he has been with the Technical University of
Budapest, where he is currently an associate pro-
fessor. His research interests include stochastic
modeling problems, such as performance and reli-

ability modeling and analysis of computer and communication systems.

Kishor S. Trivedi received the BTech degree
from the Indian Institute of Technology
(Bombay), and the MS and PhD degrees in
computer science from the University of Illinois,
Urbana-Champaign.

Dr. Trivedi is the author of a well-known text,
Probability and Statistics with Reliability, Queu-
ing and Computer Science Applications, pub-
lished by Prentice Hall. He recently published
another book, Performance and Reliability
Analysis of Computer Systems, published by

Kluwer Academic Publishers. His research interests are in reliability
and performance assessment of computer and communication sys-
tems. He has published more than 200 articles and lectured exten-
sively on these topics. He has supervised 29 PhD dissertations. Dr.
Trivedi is a fellow of the IEEE and a Golden Core Member of the IEEE
Computer Society.

Dr. Trivedi is a professor in the Department of Electrical and Com-
puter Engineering at Duke University, Durham, North Carolina, where he
has been a member of the faculty since 1975. He also holds a joint ap-
pointment in the Department of Computer Science at Duke. He is the
Duke-Site director of a U.S. National Science Foundation Industry-
University Cooperative Research Center, run between North Carolina
State University and Duke University, for carrying out applied research in
computing and communications. HE has served as a principal investiga-
tor on various AFOSR, ARO, Burroughs, Draper Lab, IBM, DEC, NASA,
NIH, ONR, NSWC, Boeing, Union Switch and Signals, NSF, and SPC
funded projects and as a consultant to industry and research laborato-
ries. He was an editor of the IEEE Transactions on Computers from
1983-1987. He is a co-designer of the HARP, SAVE, SHARPE, and
SPNP modeling packages. These packages have been widely circulated.

