
 Ministry of Defence
 Defence Standard 00-60(Part 3)

 Issue 3 Publication Date 24 September 2004

Integrated Logistic Support

Part 3 : Guidance for
Application of Software

Support

DEF STAN 00-60 (PART 3)/3

AMENDMENTS ISSUED SINCE PUBLICATION

AMD NO DATE OF
ISSUE

TEXT AFFECTED SIGNATURE
& DATE

Revision Note

No substantive change in content.

Details of the changes in all Parts can be obtained by contacting the 00-60 Help Desk on
(44) (0)1489-571491 or 0060@bmtrcl.demon.co.uk or via the D Stan Help desk or web site.

Historical Record

May 96 - Initial Issue of Parts 0 to 3, 10, 11 and 20.

Sep 96 - Up-Issue of Part 20 with amendments to Part 0; Issue 1 of Parts 21 to 25.

Mar 98 - Up-Issue of all Parts.

Sept 04 – Up-Issue of all Parts.

Arrangements of Def Stan 00-60

The proposed arrangement of the complete series of Defence Standards comprising Def Stan
00-60 is shown below.

Part 0 - Application of Integrated Logistic
Support (ILS)

- Defines Requirements for the
implementation of ILS

Part 1 - Logistic Support Analysis (LSA) and
Logistic Support Analysis Record
(LSAR)

- Defines the MOD
requirements for
implementing Logistic
Support Analysis (LSA) and
the LSA Record (LSAR)

DEF STAN 00-60 (PART 3)/3

Part 3 - Guidance for Application of Software
Support

- Defines the MOD LSA for
Software requirements

Part 10 - Electronic Documentation - Defines the MOD Electronic
Documentation requirements.

Part 20 - Application of Integrated Supply
Support Procedures

- Defines the MOD
requirements for
implementing Supply Support
within ILS.

Part 21 - Procedures for Initial Provisioning - Defines the MOD
requirements for
implementing Initial
Provisioning

Part 22 - Procedures for Codification - Defines the MOD
requirements for
implementing Codification

DEF STAN 00-60 (PART 3)/3

Collation page

DEF STAN 00-60 (PART 3)/3

1

INTEGRATED LOGISTIC SUPPORT

PART 3: GUIDANCE TO THE APPLICATION OF LSA TO SOFTWARE ASPECTS OF
SYSTEMS

PREFACE

i This part of this Defence Standard provides information and guidance on the application of
Part 1 of this Defence Standard to the software aspects of Ministry of Defence (MOD)
procurement programmes for defence materiel.

ii This Defence Standard has been agreed by the authorities concerned with its use and is
intended to be used whenever relevant in all future designs, contracts, orders etc and whenever
practicable by amendment to those already in existence. If any difficulty arises which
prevents application of the Defence Standard, the Directorate of Standardization should be
informed so that a remedy may be sought.

iii Any enquiries regarding this Defence Standard in relation to an Invitation to Tender (ITT)
or a contract in which it is incorporated are to be addressed to the responsible technical or
supervising authority named in the ITT or contract.

iv This Defence Standard has been devised for use of the Crown and its contractors in the
execution of contracts for the Crown. The Crown hereby excludes all liability (other than
liability for death or personal injury) whatsoever and howsoever arising (including, but
without limitation, negligence on the part of the Crown, its servants or agents) for any loss or
damage however caused where this Defence Standard is used for any other purpose.

This Defence Standard supersedes
Def Stan 00-60 (Part 3)/Issue 2

dated 31 March 1998

DEF STAN 00-60 (PART 3)/3

2

CONTENTS PAGE

Preface 1

Section One. General

0 Introduction 3
1 Scope 3
2 Related Documents 4
3 Definitions 4
4 Abbreviations 4
5 The Software Life-Cycle 4
6 Management and Planning 4
7 Tailoring 5
8 Software Supportability Factors 5

Section Two. Application of LSA to Software

9 Introduction 10
10 Early Project Phase Activity 10
11 Software Support Analysis 14
12 Software Support Resource Requirements 20
13 Software Support Planning 21
14 Applicability of LSA Tasks to Software 22

Figure 1 LSA Process for Software 11
Figure 2 Mapping LSA Tasks to the Generation of System Software

Requirements 13
Figure 3 Generic Model of Software Support Process 16
Figure 4 Configuration Management Process Model B-2
Figure 5 Software Operation Process Model B-4
Figure 6 Mission Preparation Process Model B-5
Figure 7 Software Modification Process Model B-7
Figure 8 Software Embodiment Process Model B-9
Figure 9 Post-Mission Recovery Process Model B-11
Figure 10 Physical LCN Structure C-2
Figure 11 Functional LCN Structure C-4

Annex A Documentation for Software Support A-1
Annex B Decomposition of Software Support Process Model B-1
Annex C Software in LCN Strategies C-1
Annex D Guidance on the Application of LSA Tasks to Software D-1

DEF STAN 00-60 (PART 3)/3

3

PART 3: GUIDANCE TO THE APPLICATION OF LSA TO SOFTWARE ASPECTS OF
SYSTEMS

Section One. General

0 Introduction

0.1 The UK MOD interpretation of Logistic Support Analysis (LSA) is defined within
Defence Standard 00-60. This part of this Defence Standard explains how the requirements
should be interpreted for application of LSA to software aspects of systems.

0.2 This part of this Defence Standard is to be read in conjunction with Parts 0 and 1 of this
Defence Standard.

0.3 Software support covers all activities undertaken to allow continued use of software
within a system; it is required:

(a) To maintain a system's effectiveness as changes occur to the environment within which it
operates (including changes to the design of the system that contains the software).

(b) To rectify shortfalls in system effectiveness resulting from changes to user requirements.

(c) To rectify errors made in the software specification and development process.

0.4 Software support is an essential element of the support for all systems that have a
software content. The whole-life cost of such support will vary according to the type of system
and how the software is procured. However, experience has shown that for many systems, the
cost of initial software development has been greatly exceeded by the cost of supporting the
software during the system operational life.

0.5 Software support is an intrinsic aspect of the support for any system with software
content. The same set of tasks and subtasks, that are defined in Part 1 of this Defence
Standard for LSA of the overall equipment, may also be used to cover the analysis of software
support.

1 Scope

1.1 This part of this Defence Standard describes the MOD policy and requirements for the
application of LSA to software aspects of systems; it comprises 2 sections as follows:

(a) Section One provides an introduction, defines terms and abbreviations, introduces the
software life-cycle and lists a number of related documents. Information on the management
and planning of LSA for software is also provided, together with a description of a number of
factors that have been identified as impacting on software supportability.

(b) Section Two describes the application of LSA to software aspects of systems. It provides
tools, interpretations and guidelines to support the application of the LSA tasks and subtasks,
described in Part 1 of this Defence Standard, to systems that include software.

1.2 This part of this Defence Standard is intended for use by customers and contractors. It is
applicable throughout the equipment life-cycle from concept through to disposal and is
applicable to all systems, and parts thereof, that have, or potentially have, a software content.

DEF STAN 00-60 (PART 3)/3

4

2 Related Documents

2.1 The documents and publications referred to in this Part of this Defence Standard are
shown in Part 0 of this Defence Standard.

2.2 A list of sources of related documents is shown in Part 0 of this Defence Standard.

3 Definitions

3.1 A glossary of terms used throughout this Defence Standard is included at annex A to Part
0 of this Defence Standard.

4 Abbreviations

4.1 A list of abbreviations used throughout this Defence Standard is included at annex A to
Part 0 of this Defence Standard.

5 The Software Life-Cycle

5.1 The Software life-cycle is the conceptual equivalent of the equipment life-cycle. As at the
equipment level, there is a variety of possible approaches which might be taken to defining the
software life-cycle. Whichever approach is taken for a particular procurement strategy, the
compatibility and relationships between the equipment and software life-cycles should be
clearly established, and be visible in project planning documentation.

6 Management and Planning

6.1 Management

6.1.1 The ILS Manager (ILSM) designated for the overall system should be responsible for
ensuring that software support is given due consideration throughout all phases of the
equipment life-cycle. LSA activities to cover software aspects of the equipment should be
planned, performed, co-ordinated and integrated within the overall equipment LSA
programme.

6.1.2 Responsibility for the conduct of ILS and LSA for software aspects of systems should
be clearly defined within ILS teams. For programmes with significant software content, ILS
teams should include software engineering specialists to conduct the software aspects of LSA.

6.2 Requirements for Planning

6.2.1 Software should be included within the scope of all equipment LSA programmes and
plans. For large projects, separate sub-plans may be produced to cover LSA for software
aspects. If software specific LSA sub-plans are produced, they should be referenced from, and
co-ordinated with, the overall equipment LSA plans.
7 Tailoring

DEF STAN 00-60 (PART 3)/3

5

7.1 The approach to tailoring the LSA activity for software will be as described in the
tailoring guidance included on the ILS web site.

8 Software Supportability Factors

8.1 There is a range of factors which might affect software supportability, and which will be
relevant to the application of LSA. These factors are generally either attributes of the software
item itself, or the associated development process, or of the environment within which the
software is operated or supported. The factors are not all unique to software, and in some
cases will be linked to system-level considerations. Those factors which are of key
significance are listed below:

(a) Change Traffic.

(b) Safety Integrity.

(c) Expansion Capability.

(d) Fleet Size and Disposition.

(e) Modularity.

(f) Size.

(g) Security.

(h) Skills.

(i) Standardization.

(j) Technology.

(k) Tools and Methods.

(l) Documentation.

8.2 The following clauses describe each of the factors, explain their relationships to the
subject system and the extent of their impact on supportability.

DEF STAN 00-60 (PART 3)/3

6

8.3 Change Traffic

8.3.1 Change traffic is a measure of the rate at which software modification is required. It is
a complex function of requirements stability, software integrity and system operation. Change
traffic will affect the volume of software support activity. Higher change traffic will require
more software modification work. Change traffic may only be measured during actual use of
the system. Before the software is in use, estimates may be made by comparison with similar
applications and projections from requirements change and fault detection rate metrics taken
during the software and system testing and trials. Any data available from comparable in-
service systems on change traffic and effort will also be of significant value.

8.4 Safety Integrity

8.4.1 The safety integrity required of a software item will be determined by consideration of
the safety criticality of the functions that it provides. Safety criticality relates to the likelihood
of anomalies in the system causing accidents of varying severity. The overall safety criticality
of a system should be established by the application of an appropriate hazard analysis
technique. The criticality of particular software items will be consequent upon the
partitioning of system functions in the system design. Designs should aim to minimize and
isolate software which implements highly critical functions. System requirements should
define safety criticality categories and specify appropriate software safety integrity levels.
Various constraints and requirements for software development, testing and modification will
be associated with each safety integrity level.

8.5 Expansion Capability

8.5.1 Expansion capability is an attribute of system design. It is concerned with the degree to
which software may be modified without being limited by constraints on computing resources.
Associated physical limitations, such as space, are to be addressed in the context of the parent
system. Examples of constraints on computing resources are:

(a) Available memory.

(b) Processor performance.

(c) Mass storage capacity.

(d) Input/Output bandwidth.

8.5.2 Inadequate expansion capability might limit the scope for software modification or
significantly impact on modification costs. Even simple changes might involve significant
amounts of rework to overcome system limitations.

8.5.3 Limited expansion capability is of particular relevance in the case of embedded, real-
time applications. In such cases it is normal to state spare capacity requirements as part of any
procurement specification.

DEF STAN 00-60 (PART 3)/3

7

8.6 Fleet Size and Disposition

8.6.1 The number of equipments in use (fleet size), and locations at which software support is
conducted, will have an impact on software supportability requirements and support costs.
Significant sub-groups of users might generate requirements for variations of the software to
suit their specific needs. The number and distribution of equipments will influence the
magnitude of the software support task and the optimum location of the software support
facilities. Moreover, large fleets are more likely to accumulate higher levels of equipment
usage, thereby increasing the probability of fault detection and the identification of corrective
change requirements.

8.7 Modularity

8.7.1 Modularity is an attribute of the low-level structure of a software design, and relates to
the extent to which processes and functions are represented as discrete design elements. The
modularity exhibited by a particular design will be a function of the engineering practices
applied by the developer, and factors determined by the choice of design method, tools and
programming language. However, in general the optimum approach to modularity will be one
that balances functional and performance requirements against the need to provide an
understandable and supportable design. Poor modularity might result in increased
modification costs owing to the need to implement consequential changes in other parts of the
software. Requirements for interface control and standardization might be used to influence
the modularity of a system design.

8.8 Size

8.8.1 A number of metrics are available to quantify software size. The size of a software item
might influence its supportability, both in terms of the level of change traffic expected and the
resources required to implement a change. The size of the software within a system is
dependent upon the application and the design solution.

8.8.2 Software requirements should state any constraints on the size of run-time software
imposed by the system design. Many software support and supportability projections will be
based on estimates of software size and complexity. Software development requirements
should specify requirements for data collection and analysis to measure software size, and to
verify any models or estimates of supportability parameters that depend on software size.

8.9 Security

8.9.1 The security classification of data, executable code and documentation might impose
constraints and demands on the software support activities and/or the Project Support
Environment (PSE). The main influence on a prime equipment will be to impose special
handling requirements. These might limit access to the software and introduce design
requirements which give rise to specific software support tasks and equipment.

DEF STAN 00-60 (PART 3)/3

8

8.9.2 The security classification of a software item will be dependent upon the application
and the equipment design. Wherever possible systems should be designed such that highly
classified software is physically segregated from all other software within a system. System
security requirements should provide criteria for security classification of software items and
should specify modification and handling constraints associated with such classifications.

8.10 Skills

8.10.1 Software modification will require personnel with appropriate software engineering
skills. Requirements for particular skills might be associated with the application domain, the
technology or the methods used. Skill requirements will be determined by the system design,
the software design and the chosen software support policy. Skill requirements will have an
impact on personnel and training needs.

8.11 Standardization

8.11.1 Standardization may be applied to the computing environment within which the
software executes, and to the technologies and engineering processes used to develop the
software and the associated software documentation. Standardization will benefit software
supportability by reducing the diversity of tools, skills and facilities required.

8.11.2 The scope for standardization across a system might be constrained by the overall
architectural design. Standardization requirements should be included within system and
software requirements. Software standardization requirements might be less rigorously
applied to software which will only be supported by the original developer utilizing existing
facilities, personnel and equipment. Software standardization requirements should avoid
constraining the design to software technology which has limited life expectancy or no clear
evolutionary path.

8.12 Technology

8.12.1 Technology should be considered in respect of the software engineering methods and
tools used in development and implementation together with the hardware and software
aspects of both the host and target platforms. Technology issues might include: specification
and software design methods and supporting tools; operating systems, programming
languages and compilers; software test methods and environments; project specific tools and
techniques; processing architectures. Requirements for the use of specific technologies might
impose constraints on the system and software design solutions, they will also affect software
engineering productivity and integrity.

8.13 Tools and Methods

8.13.1 The selection of tools and methods is dependent on the technologies used to develop
and implement the system. The use of particular tools or methods might influence the
software productivity and integrity achieved during software modification. The cost of
acquiring and supporting tools should be carefully considered, since it might influence the

DEF STAN 00-60 (PART 3)/3

9

selection of the software support policy. Depending on the level of standardization achieved,
the same tools and facilities might be used to support software items from one or more
systems.

8.13.2 Selection of the tools and methods to be used during software development is a design
decision and will form part of the design solution. The selected toolset will normally be
incorporated in a PSE, which would also provide, depending on the chosen support policy, the
basis for the post-delivery support environment for the software.

8.13.3 The tools within a PSE will require support throughout the life of the prime system to
which they relate, since the tools themselves will experience change, upgrade and
obsolescence. System developers should have a strategy for considering these issues in their
initial toolset selection, and for on-going management of overall toolset effectiveness and
integrity during the system life-cycle. Aspects which should be considered in respect of each
potential tool supplier include the following:

(a) Commercial viability and track record.

(b) Quality of customer service arrangements.

(c) Product upgrade policy, particularly in respect of the maintenance of functional
compatibility between succeeding software versions and the continued provision of support
for preceding versions.

8.14 Documentation

8.14.1 The term documentation refers to all records, electronic or hardcopy, that relate to the
requirements, specification, analysis, design, implementation, testing and operation of a
software item. In order to ensure software supportability the documentation must be produced
to an agreed standard and it must be available to the organization charged with delivering
software support. Any software tools used in the creation of documentation must be included
in the support facility and arrangements must be defined for their through-life support.
Further guidance on documentation to facilitate software support, and how such
documentation is generated, is provided at annex A.

8.14.2 Checks should be made at the end of the software development phase, and prior to
formal acceptance, to verify that all documentation needed for software support has been
identified and delivered.

DEF STAN 00-60 (PART 3)/3

10

Section Two. Application of LSA to Software

9 Introduction

9.1 The LSA strategy for any project involving software will apply LSA tasks concurrently to
hardware and software elements. However, at the detailed level of task application, there are
some distinct techniques and considerations for software, which are described in this section.
The overall LSA process for software is illustrated in Figure 1. Specific amplification of LSA
Tasks and subtasks, for application to software, are included in Part 1 of this Defence
Standard.

9.2 Software support is affected by the overall equipment design and the software
development process. The overall equipment design will determine the functionality and
performance required of the software and any constraints within which it is to operate. The
software development process will also influence the number of residual faults in the software
at the end of development and the ease with which the software can be modified. Contracts
for software procurement typically define the software functionality and any required
development standards. Therefore, little scope is provided for optimizing designs for
supportability. As a result, LSA for software aspects must commence before such contracts
are defined.

10 Early Project Phase Activity

10.1 LSA tasks undertaken in respect of software items during the early, pre-design phases of
a project offer the greatest potential benefits for supportability and for the achievement of
optimum LCC. The realization of such benefits is conditioned, however, by the nature of the
system and the procurement strategy (eg developmental versus COTS), and the extent to
which design influence is possible.

10.2 In the concept and feasibility stages of a project, preliminary LSA tasks may be
undertaken by the customer, or by selected contractors or by a combination of both. The
output will be used to compile the supportability aspects of the formal system requirement,
and the formulation of provisional software support concepts. The main areas of interest are
as follows:

(a) Prime Equipment Technical Requirements. These fall into the categories of functional
requirements (eg test and testability, system monitoring, data recording etc) and non-
functional requirements (eg growth capacity).

(b) Development Standards. Contractual standards to be applied in respect of software
design and development, quality and configuration management.

DEF STAN 00-60 (PART 3)/3

11

Figure 1 LSA Process for Software

Preparatory Studies

Staff Target or
Requirement

Support Concept

Design

Requirements
Analysis

Process

Modelling

Software Support
Task Identification

Software Support

(Task 401)

Options Evaluation

Software Support
Resource Requirements

Software Support

Plans

(Tasks 302/303)

FMECA Software Support
Analysis (Task 301)

DEF STAN 00-60 (PART 3)/3

12

(c) Support System Requirements. The attributes and performance/service levels required for
the software support system.

10.3 These areas of a system requirement might be compiled through the LSA task mapping
illustrated in Figure 2. (Note that the analysis issues listed are indicative rather than
exhaustive, and will vary between projects). These LSA Task mappings for software aspects
should be considered in conjunction with the equipment-level guidance given in the tailoring
section of the ILS web site.

10.4 The target for the application of LSA tasks in the early project phases will generally be
the application software for the envisaged system, and the system architecture (eg
processing/data communications/security) over which the functionality will be provided. The
primary purpose of any preliminary application of LSA tasks is the clear identification of
requirements and constraints, and issues requiring further analysis. This will facilitate linkage
into any subsequent LSA task iterations which might be performed. The format of any output
reports will vary according to the project phase and the nature of the system, and will be
specified in the contract.

10.5 Once software development or procurement has been initiated, the LSA process may
proceed as illustrated in Figure 1 (subject to tailoring requirements). LSA tasks during and
after software implementation are mainly concerned with the capture or definition of
information needed to support the software.

REQUIREMENTS AREA ANALYSIS ISSUES RELEVANT LSA TASKS
201 202 203 204 205

Prime Equipment Technical
Requirements

-Functional Aspects:
 -- Built-in test, diagnostics and monitoring.
 -- Recovery, reconfiguration, degradation, mode
 reversion.
 -- Data recording/access/upload/download.

 * * * *

-Non-functional Aspects:
 -- Growth capacity: memory, processing, data
 communications.

 * *

Development Standards -Design/development Methods and Tools:
 -- Requirements capture, systems analysis, design, code,
 test etc.

 * * *

-Implementation Standards:
 -- Language, data communications, firmware, security,
 documentation etc.

 * * *

-Management: Project/Quality/CM standards. * *
Support System Requirements -Readiness/responsiveness }

-Release frequencies }
-Intellectual Property Rights }
-Use of customer resources }
-Support concepts (through Task 302) }

 * * * *

Figure 2: Mapping LSA Tasks to the Generation of System Software Requirements

DEF STAN 00-60 (PART 3)/3

14

11 Software Support Analysis

11.1 Software Support Analysis (SSA) is a technique to assist in the application of LSA Task
301 to the software aspects of systems. The objectives of SSA are to identify potential
requirements for, and constraints affecting, software support, and to identify software
requirements to enhance system availability and supportability.

11.2 SSA comprises 2 broad activities: requirements analysis and process modelling.
Guidance on the conduct of these activities is provided in this section. The necessary depth of
application is variable and will depend upon the project phase, the type of procurement and
the role of the equipment. The normal approach to the balance between costs and time for the
analysis effort and the level of detail should apply.

11.3 The Applicability of Failure Modes Effects and Criticality Analysis (FMECA) and
Reliability Centred Maintenance (RCM) to Software

11.3.1 FMECA is relevant to software, in that the analysis applied to the overall equipment
should identify, for any particular failure mode, whether the associated functionality is
provided by, or dependent on, software. Further guidance on this topic is given below, within
the description of software support requirements analysis.

11.3.2 RCM is not directly applicable to software, since software 'failures' will always be the
result of unintended features of the design, rather than wearout or breakage. However,
depending on its assessed safety criticality, a software item might attract a safety integrity
level (recorded in the LSAR). This will be traceable, through the Software Engineering LSA
report, to the software tools and methods which have been selected to provide the required
assurances for integrity/reliability.

11.4 Software Support Requirements Analysis

11.4.1 General

11.4.1.1 For a typical system there will be a number of potential software support activities,
together with a number of different situations that could initiate that support. It is necessary to
systematically examine such support initiators and their consequent support requirements, in
order to identify the impact on the overall software support process. This should ensure that
the necessary supportability provisions have been made within the system requirements, and
in the design solutions intended to satisfy them.

11.4.2 Support Initiators

11.4.2.1 Support initiator is a term for any event or situation that gives rise to the need to
perform software support. Support initiators should be grouped according to common
operational, technical or user interface implications, (eg threat changes, hardware changes,
operating difficulties etc).

DEF STAN 00-60 (PART 3)/3

15

11.4.2.2 System functional failure modes due to software design errors represent a primary
group of support initiators, and will be determined through FMEA. The extent to which these
failure modes should be broken down into sub-groups to facilitate the support task
requirements analysis will vary from system to system. However, it is unlikely to be
necessary to carry the consideration of failure effects down to the level of particular errors in
the detailed design or source code.

11.5 Software Support Process Modelling

11.5.1 Process modelling is a technique to identify the processes, and their interrelationships,
involved in software support. It is used to assist in the identification of software support tasks
and the associated resource requirements, but is also a basic tool to support trade-off analyses
of support alternatives.

11.5.2 Figure 3 provides a top-level generic model of the software support process. Further
guidance on development of the elements of this model is given in annex B.

11.6 The Application of SSA

11.6.1 SSA will be carried out on Software Support Significant Items (SSSI) as part of Task
301. The following clauses describe how the techniques outlined above should be applied in
practice.

11.6.2 Support Initiator Identification

11.6.2.1 The first approach to the identification of software support initiators should be to
define a set of top-level groups, against which the subject software item might be assessed.
System failure modes induced by software, as determined by FMEA, will constitute one group
of support initiators; other examples are as follows:

(a) Changes in the Human-Computer Interface.

(b) Changes in the threat environment.

(c) Changes to parent system hardware/software.

(d) Changes to inter-operating equipments.

This approach should be adapted as necessary to take account of the individual nature of
specific equipments, ie in the light of the role of the equipment and the impact of the software
on equipment use and mission capability.

11.6.2.2 Having identified an initial set of support initiator groups, each one should be
elaborated to a further level to identify the types of event or circumstance which might trigger
a software support activity. For example, under a category of threat environment changes, the
support initiator events might comprise: new target characteristics, new target defensive

UNCONFIGURED
HARDWARE

CONFIGURED
HARDWARE

SOFTWARE
RELEASES

DOCUMENTATION

RECOVERED
SYSTEM

SOFTWARE
RELEASES

DOCUMENTATION
& DATA

MISSION
 DATA

DOCUMENTATION

CONFIGURED
SYSTEM

 RFC
 (ADAPTIVE)

 EXTERNAL INPUTS
 (eg NEW MISSION DATA)

EXTERNAL
SOURCES

 RFC
 (CORRECTIVE)

 RFC (PERFECTIVE)

FAULT REPORTS
DATA DOWNLOAD

CONFIGURATION

MANAGEMENT

OPERATION

MISSION
PREPERATION

SOFTWARE
MODIFICATION

SOFTWARE
EMBODIMENT

POST-MISSION
RECOVERY

Figure 3: Generic Model of Software Support Process

DEF STAN 00-60 (PART 3)/3

17

systems, or a new theatre of operations. This analysis should also serve to validate that the
top-level classification of support initiator groups is correct and appropriate.

11.6.3 Process Modelling

11.6.3.1 The analysis of support task requirements will be assisted by the creation and
development of software support process models, as described in this section and at annex B.
For each deliverable software item, process models should be generated taking account of any
support concept constraints and requirements. Such models provide the context for
considering the software support activities which flow from each defined support initiator and
should be elaborated as the support task analysis progresses. Eventually, a validated model
will thus be derived for each SSSI, embracing all the required support processes relevant to
that item. The models will also provide the basis for subsequent identification of the
hardware, software and human resources to be applied at the various support locations.

11.6.4 The Analysis of Software Support Task Requirements

11.6.4.1 Having identified the set of potential software support initiators and created a
provisional support process model, the next stage will be to determine the consequential
support tasks for inclusion in the overall task inventory.

11.6.4.2 Failure Mode Considerations. Software design errors might manifest themselves as
system failures when a combination of specific operating conditions cause an erroneous code
path to be executed. This might result in a fixed or systematic failure mode (eg processing
might halt, or a display might 'lock up'), or in an unpredictable transitory effect. In the case of
fixed or systematic failure modes, FMEA will identify where these are software-induced, and
will drive the provision of appropriate features in the system software design, eg graceful
degradation, reversionary modes, reconfiguration etc. However, software errors might also
cause transitory system faults which might appear in many different forms. These might not
be amenable to pre-design analysis or classification. Each of these cases has specific support
task impacts.

11.6.4.3 Software Support Task Identification. Support tasks will arise from the failure mode
effects outlined above, and from any other classes of support initiator which have been
defined for the subject system. These tasks will fall into the following categories:

(a) System operations and maintenance support tasks (ie those tasks which involve only the
handling or transportation (physically or electronically) of software executable code and data).

(b) Software modification tasks (ie the implementation of changes to the design of a
configured software item).

The support tasks within each of these categories are described in more detail below.
However, in carrying out LSA for software, it is necessary to keep in mind the relationship
between the above task categories, and the representation of software items in the functional
and physical system breakdowns. (Refer to annex C for guidance on applying LCN to

DEF STAN 00-60 (PART 3)/3

18

software.) The basic concept is that support tasks which do not involve modification (ie
design change) activity - for example, software up/downloading and transportation - should be
analyzed against physical LCN items representing executable code or data. Software or data
upload and download tasks should be recorded in the task inventory as actions applied to the
appropriate hardware item. Support tasks which are associated with software modification
should be analyzed against functional LCN items representing software design information.

11.6.4.4 System Operations and Maintenance Support Tasks. The broad types of task to be
considered under this category are as follows:

(a) Operations Support Tasks. Software support tasks associated with system operation are
initiated by the need to respond to software-induced failures during the course of a mission.
Such tasks mainly fall into 2 categories: action to reload/restart software to attempt to recover
system operation, and action to initiate support activity and/or to record information about the
system condition/configuration at the time of failure. The latter is particularly important in
the fault investigation of transitory effects, where the ability might be needed to reproduce the
effect in an appropriate test rig or reference system.

(b) Post-Mission Tasks. Software support tasks carried out immediately after a mission will
generally be concerned with data extraction (for operational/engineering analysis) and fault
investigation, and non-logistics functions such as the sanitization of classified software/data.
In respect of data-related functions, a range of data administration tasks might be required, eg
the provision and upkeep of data which is routinely needed by a software program to fulfil its
operational role. Fault investigation tasks will relate both to activities on the prime system,
and to the deeper-level testing carried out on remote reference systems which replicate or
simulate the prime system environment.

(c) Software Embodiment and Mission Preparation Tasks. On being released from the
modification process, a software item may either be issued to first-line users/operators for
direct loading into the system according to mission/operational requirements, or it may be
issued elsewhere in the maintenance organization for embodiment in a system hardware
assembly (ie in firmware). In the former case, embodiment is effectively part of mission
preparation. In the latter case the software forms part of the overall configuration status of the
parent assembly, and is loaded in the prime system as part of a hardware installation task.
Where remote embodiment in firmware is the proposed software loading concept, the task
analysis must be carried out in conjunction with LORA for the subject hardware item, to
ensure that any necessary trade-off analysis of maintenance level for hardware and software
support has been addressed.

11.6.4.5 Software Modification Tasks. These tasks will relate to the longer-term process to
introduce design changes to a software configured item. Any support initiator may necessitate
a design change if it generates a requirement for a change or enhancement to the software
functionality. Software modification involves a number of potential subtasks, but the extent
to which these will need to be recorded in a task inventory will depend on the software
support concept for the subject item, and the form of the modification process model. As a

DEF STAN 00-60 (PART 3)/3

19

general guide, software modification subtasks will be broken down only to the level where
distinct visibility of associated skills/personnel/resources is required.

11.6.4.6 Use of Task Codes and Verbs. The use of DED 427 task codes might require some
interpretation in order to facilitate their application to software. Recommended mappings are
given below in respect of the typical software support tasks covered in the foregoing
description of SSA.

TASK CODE INTERPRETATION

Remove/Fit To cover the use of portable/removable data media by
operations/maintenance personnel.

Load/Unload To cover the up/download of system data and software for
mission or test purposes. Also the up/download of
programmable memory devices.

Set Up To cover pre-mission preparation and validation of system
software or data by operations/maintenance personnel.

Software Modification
(UK-specific code)

The development and implementation of a design change
to an in-service software item.

Subtasks should be identified in the normal way using DED 431 verbs. The UK-specific verb
'code software' has been introduced to cover the transformation from low-level design
information into source code. It is recommended that the verb 'develop' should be used to
cover subtasks concerned with all higher levels of design transformation, and 'implement'
should be used to cover the transformation from source code to executable code and the build
of an image or file which may be directly loaded into the relevant equipment.

11.6.5 Levels of Software Support

11.6.5.1 For software support tasks not involved with design modification, the normal
categories for level of maintenance may be applied, as appropriate to individual customer
policy. Hence software loading/embodiment might be recommended (as determined through
LSA) to take place in conjunction with equipment maintenance at any level. Associated
support facilities should be documented in the appropriate UK LSA 'Facilities' reports as
defined in Part 0 of this Defence Standard, with reference as necessary to the equivalent
reports for the hardware assembly at the preceding indenture level.

11.6.5.2 In respect of software modification activity a somewhat different approach is
required, owing to the distinctive nature of the support tasks, and the fact that for any software
deliverable item there would normally be only one support facility, at a single location. This
might be at an operational unit, or with a contractor, or at some intermediate facility. The
approach taken in this standard is to define the software modification function as 'Specialized
Repair Activity' (see DED 277 and 427). Data element 427 is linked to LSA Report 628,

DEF STAN 00-60 (PART 3)/3

20

which should therefore be used as the standard means of defining the required support
facilities for software modification of a particular software candidate item. An appropriate
facility name should be used to distinguish such reports from those for other facilities.

12 Software Support Resource Requirements

12.1 Software support resource requirements will be analyzed and quantified in conjunction
with the application of LSA Task 401 to the overall equipment. Software support tasks
relating to the operational use of an equipment, and mission preparation and recovery, are
essentially equipment-level tasks. A similar approach will apply to software embodiment
tasks carried out at the equipment level. However, tasks concerned with software
modification require some particular considerations, as outlined below.

12.1.1 Release Frequency. Specialist tools might be used to generate detailed predictions for
the expected rate and volume of change to a software program. However, based on
information generated by the Use Study, the assessment of comparative systems and the
application of SSA, a planned release frequency may be determined. There is provision for
this to be recorded in the LSAR. Unless the customer specifies otherwise, the release
frequency should be a balance between the resources and costs for a range of release
frequency options, and the need for the user to be able to take advantage of progressive
improvements in functionality and performance.

12.1.2 Sharing of Resources Between Development and Support Functions. The nature of
developmental software procurements often involves the continuation of development work
for a considerable period beyond the initial in-service date of the parent equipment. Where
concurrent development and support activity require some use of common facilities or
resources, their capacity to satisfy the expected overall utilization requirements should be
assessed. Alternative resource proposals should be made where necessary.

12.1.3 Critical Resources. Certain elements in a software modification facility represent
'bottlenecks' (ie single, critical resources) in the overall change development and
implementation process. The resource requirements analysis should identify such items and
estimate the average utilization factor. Remedial action should be proposed where necessary.

12.1.4 Consolidated Software Team Resources. Where it is recommended that support for a
software item is undertaken by the customer, the support plan should provide a consolidated
support team description covering all required functions and resources, including
infrastructure aspects such as QA and CM.

12.2 Use of Software Metrics

12.2.1 A software metric is any attribute of a software product or its development process,
about which data may be collected and analyzed. Such activity might fall into a number of
non-logistics domains, such as project monitoring and process improvement, but will also be
of value to the LSA process in helping to quantify support resource requirements.

DEF STAN 00-60 (PART 3)/3

21

12.2.2 Despite these benefits, it is difficult to define a standard set of software metrics which
would be appropriate and usable for all types of MOD project. Hence the formal use of
software metrics in this Defence Standard is limited to a set of DED, defined in Part 0 of this
Defence Standard, which provide program sizing information. Customers might nevertheless
specify or prefer the use of particular methods and tools for estimating software support
resources and costs. Where no such preference is stated, the contractor should propose an
approach to generating and analyzing appropriate detailed supporting data. In either case, the
form and content of deliverable reports associated with such methods and tools should be
defined in the contract.

13 Software Support Planning

13.1 Software support planning will be integrated with the equipment-level analysis of
support requirements and support system alternatives. The activity of SSA represents the
application of LSA Task 301 to software, and will consider relevant aspects of the output
from FMEA (ie software-induced failure modes). LSA Tasks 302, 303 and 401 will be
applied as described in Part 1 of this Defence Standard.

13.2 For software support functions not involved with software modification, the
consideration of support system alternatives will be through application of the standard LSA
process. However, for the application of Tasks 302/3 to the software modification function,
contractors should take into account a number of special considerations.

13.3 Support Policy Options for Software Modification. A wide spectrum of support policy
options for software modification is available, ranging from full contractor support at one
extreme to full customer support at the other. Contractor support will normally be the default
option, but for software which is expected to be particularly sensitive to operational/business
change requirements, the software modification process might require an element of
integrated 'intelligent customer' resource to participate in such functions as change
analysis/specification /prototyping etc. Where such an approach is recommended, the trade-
off analysis should consider the options for physical integration of customer and contractor
facilities, and the most cost-effective balance between their respective resources. Other issues
of significance to support policy are as follows:

13.3.1 Intellectual Property Rights Considerations

13.3.1.1 Constraints on Support Policy. Intellectual property rights (IPR) refer to the legal
limitations obtained by the creator of a software design or product on the ability of third
parties to use, replicate or modify that software. This is a key support policy issue, in that IPR
might place constraints on a customer's ability to undertake software support in-house, or to
consider alternative support agencies. Any such constraints need to be exposed and assessed
prior to contract award.

13.3.1.2 Vendor Failure. The commercial failure of a COTS vendor, whilst generally a
remote possibility, might have serious support consequences for affected systems. However,
the extent to which contingency measures should be explored during LSA should be limited to

DEF STAN 00-60 (PART 3)/3

22

instances where there is considered to be relatively high risk (eg immature product,
specialised functionality etc). In such cases the analysis would consider to what extent there
were suitable alternative products in the marketplace, and whether arrangements could be
established for the acquisition of the necessary IPR by an alternative support agency.

13.3.2 Location of Support. The location of a software support facility is a key support policy
consideration. Whilst contractor support at the original development site will generally be the
default option, the following factors should be considered in the analysis of all options under
consideration for any particular system:

(a) Responsiveness to change requirements (ie can urgent software updates be implemented
and brought into use by the user in timescales which satisfy his operational needs).

(b) Collocation with related system facilities (eg trials units).

(c) Collocation with other system software support facilities.

13.4 Use of LSA Reports. Although most LSA reports are directly applicable to software, a
specific report has been devised - LSA-672 'Software Engineering Report' - to consolidate the
key logistics aspects relating to a software item and its support requirements. This report is
described in Part 0 of this Defence Standard. If it is considered that there would be benefit for
a particular project in maintaining visibility of a defined subset of software-related DED, the
use of an appropriately structured ad hoc report should be considered.

14 Applicability of LSA Tasks to Software

14.1 In broad terms, most LSA subtasks may be applied to software as they stand. This
section has described the application of LSA subtasks in the context of an overall LSA
process for software, and Part 1 of this Defence Standard gives the complete subtask
descriptions for application to equipments overall. This includes annotations and additional
information, where appropriate, to highlight any specific interpretation or activity which
should be undertaken for software. Where any specific subtask description has no such
modifications, the subtask should be interpreted and applied equally for hardware and
software within the overall equipment context. Additional guidance on the application of
LSA tasks to software elements of systems is provided in annex D.

14.2 Only 2 LSA subtasks are considered not to be applicable to software. The first - subtask
303.2.10 (Energy Trade-Offs) - is technically incompatible, and the second - subtask 301.2.4.2
(RCM) - is considered inappropriate for reasons which are discussed under the coverage of
Software Support Analysis earlier in this section.

DEF STAN 00-60 (PART 3)/3
ANNEX A

A-1

Documentation for Software Support

A.1 The generation of documentation to facilitate software support is included within the
integrated approach to LSA and documentation which this Defence Standard provides.
Specific measures concerning the creation and compilation of Data Modules (DM) for
software are covered in Part 10 of this Defence Standard. The guidance in this annex is
intended to describe the peculiar aspects of documentation relevant to the software
modification task, since this activity, with its emphasis on design change, is significantly
different to servicing and maintenance tasks for hardware.

A.2 Software modification can only be carried out effectively if the organization tasked with
such activity has access to the necessary supporting information. The information required
can be grouped into five areas: design, system, support environment and facilities,
development process, and management. A summary of each of these areas is as follows:

A.2.1 Design Information. Software and system design information provides the engineering
baselines on which the software modification process operates. Software design information
includes specifications and all design representations (ie the design 'record') such as source
code, structure charts, data flow diagrams etc. Relevant system design information would
cover areas of interaction between the system software and hardware design, eg interface
details.

A.2.2 System Information. A support organization will require system information in order
to understand how the software operates within the system. System information would
typically include a system description, details of system operation, user/operator/maintainer
manuals, etc. The investigation of operating problems, and the assessment of the impact on
the system of any proposed in-service software modifications (and vice versa), both require
access to this type of information.

A.2.3 Support Environment and Facilities Information. Access to this class of information is
essential if a support organization is to maintain effective control over the modification
process, and the integrity of the end product. PSE information includes details on software
tools used, project database, hardware requirements in terms of host and target, test harnesses
etc. Facilities information describes the physical environment within which a PSE, and the
associated technical resources required for software modification, are accommodated.

A.2.4 Development Process Information. It is necessary to ensure that software
modifications are carried out in a manner which is consistent with the original design and
development methodology. To this end, information on the software development process
and associated software engineering standards is required. This will describe such aspects as
codes of practice, programming guidelines, development standards etc.

A.2.5 Management Information. Management information to support software modification
is related to the design process and associated management aspects. This may include such
items as the following:

DEF STAN 00-60 (PART 3)/3
ANNEX A (CONTINUED)

A-2

(a) Plans (Quality/CM/test/acceptance/safety etc).

(b) Development methodology and procedures.

(c) Personnel aspects (qualifications/experience and training needs for the various roles
within the support organization).

A.3 Data Module (DM) Requirements

A.3.1 In LSA, software modification will be treated as a top-level support task, which may be
broken down into subtasks (eg design, coding etc) as appropriate to individual projects. For
documentation of the software modification task, a DM has been defined which will provide a
description of the overall design change process, and identify or reference the relevant
information sources as outlined above. Associated DM may be generated for subtasks under
software modification, although in many instances the documentation required for support of
a software item will mirror that which was generated and used during the initial design and
development.

A.3.2 A DM has also been defined which will describe the transformation from a complete,
updated functional design, into the actual executable image or data file that will be loaded into
a system. This DM will provide the basis for necessary links between documentation of
software upload tasks, which LSA will assess in the physical system breakdown against the
relevant hardware item, and the documentation for the related design units in the functional
breakdown.

A.4 Information Needs for In-service Change Management. During a system’s in-service
phase, users and operators will generate information concerning software problems and
failures, as well as requests to improve the existing functionality. The responsible software
support organization will need to define the form and content of such information, in order to
establish an efficient user interface and to allow the change management process to be
controlled effectively.

A.5 Information Sourcing. As indicated above, some elements of the documentation required
for software modification (eg design documentation) will not be provided directly through
DM, but will be procured by the customer, if required, through separate contractual
arrangements. Separate arrangements might also be necessary to provide documentation to
support the in-service change management function, although for software which will be fully
supported by the contractor, much of this documentation will probably already be in place.
However, for other support options involving customer or third party resources, the relevant
Defence authority for system support will be responsible for arranging the provision of
whatever documentation is required. This would include such entities as: Software Fault
Reports, change control records, Requests for Change (RFC) etc.

DEF STAN 00-60 (PART 3)/3
ANNEX B

B-1

Decomposition of Software Support Process Model

B.1 Introduction

In this annex the generic model of the software support process, introduced in clause 11.5.2, is
decomposed to give further guidance and examples of the internal structure of each of the
constituent processes.

B.2 Configuration Management

B.2.1 Figure 4 illustrates the Configuration Management process model which covers those
activities necessary to maintain configuration control over the software, its PSE and all
associated documentation and data. The process includes the management of software
modification, data administration and the co-ordination of the release of software items and
data.

B.2.2 Inputs. The Configuration Management process receives data from external sources
and from the Post-Mission Recovery process. The process also receives perfective RFC from
the Operation process and corrective RFC from the Post-Mission Recovery process; adaptive
RFC are received from external sources. Perfective RFC are intended to initiate software
changes to enable software items to operate in an improved fashion; corrective RFC are
intended to initiate the correction of errors in existing software items and adaptive RFC are
intended to initiate software changes to enable software items to operate in a changed
hardware or software environment.

B.2.3 Configuration Management Sub-Processes

B.2.3.1 Configuration Control. This sub-process covers the registration and evaluation of
RFC and management of the authorization of associated work; it also co-ordinates the
activities necessary to manage the issue and release of software items.

B.2.3.2 Software Modification. A description of the Software Modification process is given
in clause B.5.

B.2.3.3 Software Library. This sub-process maintains a reference library of the configured
items for use by any approved user. It implements the procedures for entering items into the
library and withdrawing them for the purposes of both operational use and modification.

B.2.3.4 Data Administration. This sub-process covers the provision and upkeep of any
loadable data required by the software.

B.2.3.5 Issue and Release. This sub-process implements procedures to register new software
items and to issue and release them to approved users.

B.2.3.6 Replication and Distribution. This sub-process covers the replication and distribution
of configured items to authorized users.

Figure 4 Configuration Management Process Model

Replication &

Distribution
Issue &
Release

Configuration
Control

Software
Modification

Software
Library

Data
Admin

RFC

(Corrective)
RFC

(Perfective)

RFC
(Adaptive)

Software Releases
Data
Documentation

Documentation

Software
Releases

External
Inputs

(eg new
Mission
Data)

Mission Data

DEF STAN 00-60 (PART 3)/3
ANNEX B (CONTINUED)

B-3

B.2.4 Outputs. The Configuration Management process generates new software releases,
data and associated documentation.

B.3 Operation

B.3.1 Figure 5 shows the operation process model. This illustrates those sub-processes,
involved with the use of software in the system, which generate or are associated with support
tasks. Normally this process and all associated sub-processes would be carried out by
operational staff and not by members of an organic support organization.

B.3.2 Inputs. The Operation process receives a configured system, ready in all respects for
use, from the Mission Preparation process. Documentation pertaining to the operation of the
system is received from the Configuration Management process.

B.3.3 Operation Sub-Processes

B.3.3.1 Mission Usage. This sub-process covers the operational use of the software within its
normal mission environment and includes simple operational procedures to boot, run or use
the software within the system or equipment.

B.3.3.2 Performance Monitoring. This sub-process covers the monitoring and review of the
operational use of the software to identify and report perceived faults and requirements for
changes to the functions and facilities provided by the software.

B.3.3.3 Fault Recovery. This sub-process covers actions taken by the system operational
staff, following a software failure, to recover system operation to its state prior to the failure
(eg re-boot, re-load, re-run, re-start).

B.3.4 Outputs. The Operation process generates fault reports which are investigated in the
Post-Mission Recovery process. Additionally, the process also generates perfective RFC
which are input to Configuration Management process. Mission Data is also passed to the
Configuration Management process.

B.4 Mission Preparation

B.4.1 Figure 6 illustrates the Mission Preparation process model; it covers those activities
required to load software and data onto equipments to prepare them for operation.

B.4.2 Inputs. The Mission Preparation process receives recovered systems from the Post-
Mission Recovery process and Configured Hardware from the Software Embodiment process.
It also receives software releases, documentation and data from the Configuration
Management process.

Figure 5 Operation Process Model

Performance

Monitoring
Fault

Recovery
Configured

System

Documentation RFC

(Perfective)

Fault Reports

Data

Download

Mission

Useage

Figure 6 Mission Preparation Process Model

Obtain
Access

Upload
Data

Upload
Software

Configuration,
Customization
and Set-up

System
Validation

Software Releases, Documention and Data

Configured
Hardware

Recovered
System

Configured
System

DEF STAN 00-60 (PART 3)/3
ANNEX B (CONTINUED)

B-6

B.4.3 Mission Preparation Sub-Processes

B.4.3.1 Obtain Access. This sub-process covers any activities necessary to obtain access for
the purpose of uploading data or software.

B.4.3.2 Upload Software. This sub-process covers the loading of software onto a system.

B.4.3.3 Upload Data. This sub-process covers the loading of data onto a system.

B.4.3.4 Configuration, Customization and Set-up. This sub-process covers any requirements
for special tasks to be carried out when a new version of the software is loaded or when the
software is to be configured for a new user, role or threat.

B.4.3.5 System Validation. This sub-process includes any activities necessary to validate the
configured system before it is released to the Operation process.

B.4.4 Outputs. The Mission Preparation process generates configured systems ready for use
within the Operation process.

B.5 Software Modification

B.5.1 Figure 7 illustrates the Software Modification process model which covers all activities
necessary to modify software. The sub-processes within Software Modification are all equally
applicable to perfective, corrective and adaptive RFC.

B.5.2 Inputs. The Software Modification process takes as its inputs RFC from the
Configuration Control sub-process in the Configuration Management process.

B.5.3 Software Modification Sub-Processes

B.5.3.1 Change Analysis. This sub-process carries out the analysis of all RFC to determine
their impact on the system or equipment. The sub-process will also define the required
changes to relevant software documentation.

B.5.3.2 Test Planning. This sub-process covers the preparation, update and correction of test
plans, schedules, and data for use in verification and validation of modified software. The
sub-process defines the tests and criteria for unit testing, integration testing, regression testing,
system testing and acceptance testing.

B.5.3.3 Design. This sub-process covers all activities required to amend the software design
in order to carry out a software modification. This sub-process also defines the changes to
software documentation that will be required.

B.5.3.4 Coding. This sub-process covers the amendment and/or production of software code
to implement a software modification; it also defines required changes to relevant software
documentation.

Figure 7 Software Modification Process Model

Transfer

Change
Analysis Test

Planning

Design

Coding

Verification and Validation

Configured

Items

RFC
 D
 O
 C
 U
 M
 E
 N
 T
 A
 T
 I
 O
 N

DEF STAN 00-60 (PART 3)/3
ANNEX B (CONTINUED)

B-8

B.5.3.5 Documentation. This sub-process covers the embodiment of required changes into
software documentation as a result of the activities of other Software Modification sub-
processes.

B.5.3.6 Verification and Validation. This sub-process evaluates the products of other
Software Modification sub-processes to determine their compliance and consistency with both
contractual and local standards and higher level products and requirements. Verification and
validation consists of software testing, traceability, coverage analysis and confirmation that
required changes to software documentation are made. Testing subdivides into unit testing,
integration testing, regression testing, system testing and acceptance testing.

B.5.3.7 Transfer. This sub-process covers the transfer of modified software items to the
Configuration Management process.

B.5.4 Outputs. The Software Modification process generates modified software items and
associated documentation which are handled by the Configuration Control sub-process within
the Configuration Management process.

B.6 Software Embodiment

B.6.1 Figure 8 illustrates the Software Embodiment process which covers those activities
necessary for loading a software item onto a programmable hardware device.

B.6.2 Inputs. The Software Embodiment process receives software releases from the
Configuration Management process and unconfigured hardware items (ie items with
programmable memory, the content of which is blank or has been erased in preparation for
reprogramming).

B.6.3 Software Embodiment Sub-Processes

B.6.3.1 Disassemble Hardware. This sub-process covers any requirements to disassemble
any hardware items in order to load software.

B.6.3.2 Load Programmable Device. This sub-process covers the loading of software onto a
programmable hardware device.

B.6.3.3 Reassemble Hardware. This sub-process covers the re-assembly of hardware items
after software embodiment. It includes any requirements for installation checks before an
item is passed to the Mission Preparation process.

B.6.4 Outputs. The Software Embodiment process produces items of Configured Hardware
which are passed to the Mission Preparation process.

Figure 8 Software Embodiment Process Model

Disassemble
Hardware

Software
Releases

Unconfigured
Hardware

Configured
Hardware

Reassemble
Hardware

Load
Programmable

Device

DEF STAN 00-60 (PART 3)/3
ANNEX B (CONTINUED)

B-10

B.7 Post-Mission Recovery

B.7.1 Figure 9 illustrates the Post-Mission Recovery process model which covers those
activities necessary to recover a system after operational use; this includes the downloading of
data, the sanitization of systems that have processed classified data or run classified software
and the initial investigation of fault reports.

B.7.2 Inputs. The Post-Mission Recovery process takes systems that have been subjected to
operational usage and fault reports from system users as inputs.

B.7.3 Post-Mission Recovery Sub-Processes

B.7.3.1 Investigate Fault Reports. This sub-process covers the investigation of fault reports,
including replication of faults and the generation of corrective RFC.

B.7.3.2 Obtain Access. This sub-process covers any requirement to manipulate hardware
components in order to download data.

B.7.3.3 Download Data. This sub-process covers the post-mission downloading of data from
a system.

B.7.3.4 Sanitize System. This sub-process covers any requirement to declassify a system
after it has held classified data or run classified software.

B.7.3.5 Recover System. This sub-process covers all activities, that have not been addressed
elsewhere in the Post-Mission Recovery process, necessary to render a system ready for the
application of the Mission Preparation process.

B.7.4 Outputs. The Post-Mission Recovery process generates recovered systems, corrective
RFC and mission data.

Figure 9 Post-Mission Recovery Process Model

Fault Reports
Used System

Investigate
Fault Reports

Obtain
Access

Sanitize
System

Recover
System

Download
Data

RFC
(Corrective)

Recovered
System

Mission
Data

DEF STAN 00-60 (PART 3)/3
ANNEX B (CONCLUDED)

B-12

Collation Page

DEF STAN 00-60 (PART 3)/3
ANNEX C

C-1

Software in LCN Strategies

C.1 Introduction

Software items should be included within the overall system LSA Control Number (LCN)
strategy. The means by which this is to be achieved should be described in the LSA Plan.

This annex describes the principles that underlie the preferred approach to the allocation of
LCN to software items. The application of these principles is then illustrated with an
example.

C.2 Software LCN Requirements

Due to the nature of software it is not possible to allocate LCN in the same way as for
hardware.

Software is not a physical entity, therefore in a physical LCN structure it is not inherently
obvious where software items should be located. Nevertheless, a standardized approach is
needed to cater for those software support tasks which are concerned purely with the handling
of software code and data for the purposes of system operation or maintenance. Software
LCN in a physical LCN breakdown should therefore be associated with the LCN of the
hardware items on which, or through which, the handling activity is carried out.

This approach does not, however, reveal the functional relationship between a software item
and the system within which it operates. Visibility of such functional relationships is
necessary to identify software support activities that result in changes to the software design.
Furthermore, the functional representation of relationships allows for the aggregation of
system attributes (eg rolling-up reliability data).

Therefore, it is necessary to maintain 2 views of each software item that is to be supported.
The first view is provided by including executable software, and data, in the physical LCN
breakdown. The second is provided by including a design representation of the executable
code in the system functional LCN breakdown.

The following example, of an aircraft Defensive Aids System, illustrates the approach
outlined above.

C.3 Example

C.3.1 Physical LCN

In a physical LCN structure, 2 distinct types of software may be encountered.

The first is termed 'loadable' software. In the example, Figure 10, 2 items of loadable
software - Load 1 and Load 2 - are delivered using a hand held data loading device

Figure 10 Physical LCN Structure

Aircraft
 A

 Centre
Fuselage
 A03

Avionics
 Bay 1
A0305

Software
 Load 2
A030602

 LRI 2
A030505

 Board 2
A030505C

 Fourier 3
 Software
A030505CA

 LRI
1A030504

Software Loading

Point A0306

Software
 Load 1
A030601

 Fourier 2
 Software
A030505A

Note:
Load1 comprises SSSI
Fourier 1 and Sig
Load 2 comprises SSSI
Sig 2 only.

 Board 1
A030505B

DEF STAN 00-60 (PART 3)/3
ANNEX C (CONTINUED)

C-3

temporarily connected to a Software Loading Point. In other circumstances these software
items might be provided on a tape or disc, in which case they would be shown as children of
the disc/tape drive.

The second software type is termed 'resident', that is to say it forms the software element of a
firmware device. Software of this type would have been embodied at 2nd, 3rd or 4th line.
The example shows 2 resident software items - Fourier 2 and Fourier 3. The first is a child of
a Line Replaceable Item (LRI) and the second is a child of a board within an LRI.

In all cases the software item is a child of the hardware maintenance significant Candidate
Item where the physical loading activity takes place.

C.3.2 Functional LCN

In a functional LCN structure, SSSI should be shown as children of the sub-system within
which they operate. In allocating LCN it is necessary to consider the supportability
characteristics of the software items in question; items with particular support needs should be
allocated their own LCN. For example, the LCN scheme should distinguish between SSSI
that are loadable and those that are resident. It might also be necessary to distinguish between
software that has either been provided by, or 'bought in' by, the prime contractor, or to identify
SSSI that are safety or security significant. Clearly, during the early stages of a project these
supportability issues might not all have been fully explored. The development of a full
functional LCN allocation scheme should therefore be seen as an iterative process.

In order to develop an LCN structure in which SSSI are logically grouped at an appropriate
level of indenture, and in which the differing support requirements of all SSSI are exposed,
items will often be included at intermediate levels of indenture against which only limited
amounts of information need be stored. For instance, in the example at Figure 11, little LSAR
data will stored in respect of items Fourier Software and Signature Software - LCN A060204
and A060206 respectively; the full range of LSAR information will be recorded against SSSI
at the lowest level of indenture.

In all such cases, software is represented by the entities on which the modification activity is
carried out; that is to say the software design information as described in annex A.

C.4 Functional/Physical Relationships

It is necessary to maintain both functional and physical views of all SSSI throughout the life
of the parent system. It is important to be able establish links between SSSI in the functional
domain and the associated executable code in the physical domain. This may be achieved
through the use of data table XG.

Figure 11 Functional LCN Structure

Aircraft
 A

 Ident
Sub-System
 A0602

Signature
Software
A060206

 Fourier 2
A060204B

 Fourier 1
A060204A

Hardware
 Item
A060203

 Fourier
Software
A060204

 Alert
Software
A060205

 Defensive
Aids System
 A06

 Fourier 3
A060204C

 Sig 2
A060206B

 Sig 1
A060206A

Fourier 1 is loadable
Fourier 2 is resident
Fourier 3 is classified/resident

Sig 1 is classified/loadable
Sig 2 is COTS/loadable

DEF STAN 00-60 (PART 3)/3
ANNEX D

D-1

Guidance on the Application of LSA Tasks to Software

D.1 100 Series Tasks

D.1.1 Task 101 - Development of an Early LSA Strategy

D.1.1.1 The software supportability inherent in a system is largely established by the time that
software development is initiated. After this point, any steps that may be taken to improve
software integrity or maintainability may be outside the contracted requirements, and changes
to the software functionality will be constrained by the system architecture. Key decisions
affecting eventual software supportability will often have been taken by tenderers during the
preparation of their proposals. LSA must, therefore, seek to influence system architectures
and software requirements before software development or procurement contracts are placed.
Further information on early project phase activity is provided in clause 10.

D.1.1.2 The early LSA strategy, established by the Project Office, should include software
aspects of systems. The strategy should consider the processes for determining software
functionality, specifying software and software engineering requirements, and contracting for
software development and procurement. The strategy should select LSA tasks and subtasks
and allocate them to appropriate organizations and procurement life cycle phases to ensure
their effectiveness. The LSA Strategy should identify requirements for models and estimates
to enable quantification of software support resources.

D.1.1.3 Considerable uncertainty may be associated with software supportability issues prior
to software development. However, the portion of the life cycle prior to contracting for
software development or procurement provides the maximum potential for improving overall
supportability. The early LSA strategy should ensure that analysis of software support is not
delayed until accurate data becomes available. Early LSA activities for software aspects of
systems should be performed promptly using the best data or estimates that are readily
available.

D.1.2 Task 102 - LSA Plan

D.1.2.1 Generally, software will be included in the system LSA plan (LSAP); however, there
may be instances when a separate software LSAP will be required. All the requirements of
the overall system LSAP should apply to any software specific LSAP. The LSAP should
define the scheme for the allocation of LSA Control Numbers (LCN) to software items -
guidance on software LCN strategies is provided in annex C.

D.1.2.2 Project support environments (PSE) are essential to the modification of software.
PSE should be included within the system LCN scheme in a similar manner to any other
support equipment essential to the support of the system.

D.1.3 Task 103 - Programme and Design Reviews

D.1.3.1 No further guidance required for software aspects of systems.

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-2

D.2 200 Series Tasks

D.2.1 Task 201 - Use Study

D.2.1.1 Software Supportability Factors. Particular factors affecting software supportability
are identified in clause 8. These factors may relate to either, the functional requirements and
constraints to be met by the system, or the design and implementation approach selected. The
significance of each factor should be considered in respect of each of the logical software
functions identified for the system - this process is iterative and should be carried out as new
functions are identified and decomposed. The impact of the supportability factors should also
be reviewed in respect of the SSSI identified as the architectural design emerges. Any
pertinent software supportability requirements and constraints arising from the intended
operation and support of the system should be documented.

Software support activities such as carrying out fault recovery actions or setting user variables
are subject to all the factors affecting hardware supportability.

Software modification may be needed in response to the detection of faults, changes to the
system design or changes to system requirements. Software modification may be initiated by
users, system maintainers, support authorities or design authorities; the same agencies may
impose constraints on the software support process.

Some software supportability factors will be affected by the application area (eg security
classification, safety integrity), whilst others will be affected by the technology employed (eg
development environment, implementation language).

D.2.1.2 Quantitative Factors. Quantitative data resulting from consideration of the software
supportability factors should be documented. For software support issues, such data should be
limited to attributes of direct relevance to the use and support of the system. Examples of
such data include:

(a) Allowable software support activity durations (ie time to complete software installation,
data entry or transfer, re-boot etc).

(b) Existing resources available for software support.

(c) Response time for rectification of software faults.

(d) Software release frequency.

(e) Data transfer and storage requirements and constraints.

Clause 12 describes the approach to be taken to the quantification of software support
resources.

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-3

D.2.1.3 Field Visits. Separate field visits might be necessary to obtain information pertinent
to the application area and the technology employed. Visits should be made to operational
units and support cells of in-service systems using the same or similar technology to that
envisaged for the subject system. During these visits data should be captured on support
requirements originating from the technology involved. Such data may include: software
modification team size; documentation, skill and tool requirements; engineering problems and
constraints.

D.2.2 Task 202 - Mission Hardware, Software & Support System Standardization

D.2.2.1 Supportability Constraints. Existing and planned software support personnel, tools
and facilities that might be relevant to the subject system should be identified. Constraints on
the software development process and the technology employed - stemming from cost,
manpower, personnel, readiness and support policy considerations - should be identified for
application to the project as a whole.

D.2.2.2 Supportability Characteristics. It is necessary to provide information on software
support costs, resource requirements and support activity durations in order to complete an
overall assessment of the impact of the system and software standardization efforts. Software
support information should be commensurate with the level of hardware and software
standardization being pursued; it should also take account the need for the definition of a
complete software support process. A software support process model, as described in clause
11, should be developed and used as a basis for determining software support information.
Clause 12 describes the approach to be taken to the quantification of software support
resources.

D.2.2.3 Recommended Approaches. Hardware and software standardization initiatives that
are of potential benefit to system cost, readiness or supportability should be identified and
considered for identification as design or development constraints. Candidates for
standardization leading to improved software support include: processors and memory
devices; operating systems; interface protocols; software development (& support)
environments; compilers; software development and testing methodologies and tools; data
formats; coding and naming conventions etc.

D.2.2.4 Risks. All risks resulting from the establishment of constraints through the
application of standardization should be identified. Equally, risks that may arise from any
decision not to apply standards should be considered. Risks might be associated with
dependence on limited software support resources and facilities or on the imposition of
constraints on design solutions that conflict with functional or performance requirements.

D.2.3 Task 203 - Comparative Analysis

D.2.3.1 Identify Comparative Systems. A set of existing software systems should be
identified to enable informative comparisons to be carried out against a range of possible
software system design alternatives. To compare all attributes of interest adequately it will be
necessary to identify software systems from comparable application areas, utilizing

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-4

comparable technologies, that are of comparable size and that are subject to comparable
support policies to those anticipated for the new system. In some sectors, where system
replacement cycles are long (20 years or more), it might be difficult to identify systems that
will yield useful comparative data, due to advances in technology or changes in policy etc that
have occurred in the intervening period. In such cases examples should be drawn from other
system domains and where necessary, a range of different software systems should be
identified to cover all the relevant features of interest. However, data obtained in this way
should be treated with appropriate caution.

D.2.3.2 Baseline Comparative System. A BCS for a software intensive system will generally
need to be developed as a composite of aspects of a range of existing systems. Existing
systems from comparable application areas should be used to generate data relating to
functional requirements, such as: safety integrity, mission criticality, security classification
and stability of requirements. Existing systems of comparable size, technology and support
policies should be used to collect data associated with the design solution, such as:
productivity, servicing and software modification durations, tool requirements, engineering
problems and fault densities.

D.2.3.3 Comparative System Characteristics. Data from identified comparative systems may
be used in conjunction with software support process models (as described in clause 11) and
the approach to resource quantification (as described in clause 12) to model the characteristics
of the comparative system. Characteristics associated with software supportability should
include:

(a) Description, frequency and duration of each software support and operation activity.

(b) Frequency of software releases.

(c) Costs and quantities of resources (tools, personnel, facilities etc) required for operation
and support of the software.

D.2.3.4 Qualitative Supportability Problems. Any qualitative supportability problems
evidenced by comparative systems should be identified and steps should be taken to avoid
their recurrence in the design of the new system. Each element of the software support
process model should be considered for all phases of the system life-cycle. Consideration
should be given to all storage and transfer media, documentation, tools and facilities required
for software support.

D.2.3.5 Supportability, Cost & Readiness Drivers. All software supportability, cost and
readiness drivers should be identified and recorded for each comparative system. For
example, software data transfer cycle time or software installation and start-up times may be
prime system readiness drivers, software modification personnel, tools and facilities may be
cost drivers.

D.2.3.6 Unique System Drivers. All software supportability, cost and readiness drivers for
the new system that are not reflected within comparative systems should be identified and

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-5

recorded. Critical examination of software support process models and the conduct of
Software Support Analysis (as described in clause 11) may be used to assist in the
identification of such drivers.

D.2.3.7 Risks & Assumptions. Any risks and assumptions associated with the use of data
from comparative systems should be identified and documented. In particular, the validity of
data from different technologies or application areas should be carefully considered. Data
relating to software fault density and productivity may be critically dependent upon the
technology and personnel involved in software development and support. Where there is
significant uncertainty over the value of critical parameters, attempts should be made to assess
the range of values that might be expected rather than base decisions on point estimates.

D.2.4 Task 204 - Technological Opportunities

D.2.4.1 Recommended Design Objectives. Software supportability may be affected by both
hardware technology and software development process technology. Requirements, specific
supportability design objectives and recommendations may be established through:

(a) Identifying technology advances in the areas of system and hardware architectures,
operating systems, programming languages and application packages, software development
methodologies and tools.

(b) Estimating the resultant improvements in overall system supportability, cost, safety and
readiness values that might be achieved.

(c) Considering each of the elements of the software support process model to identify
potential software engineering techniques or tools that could benefit software support.
Examples include: tools for automation of code generation, documentation, configuration,
verification and validation; provision of software documentation in electronic format.

D.2.5 Task 205 - Supportability & Supportability Related Design Factors

D.2.5.1 Supportability Characteristics. Quantitative characteristics, relating to a range of
alternative design and operational concepts (covering both peacetime and wartime
conditions), should be documented for all identified modes of system operation and support.

Operational characteristics should be established in terms of manpower, skills and
performance standards for all modes of software operation.

Supportability characteristics should be established in terms of: system readiness
requirements, software failure rates, durations for software installation, re-setting or re-
booting, feasible software support concepts, software change traffic, software release
frequencies, manpower estimates, skill and aptitude requirements, tool and facility costs.
Clause 12 describes the approach to be taken to the quantification of software support
resources.

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-6

D.2.5.2 Sensitivity Analysis. Decisions and estimates associated with software supportability
may be based on assumptions about the frequency and type of software change requests that
are likely, software fault densities, software modification productivity etc. Since large degrees
of uncertainty may be associated with such assumptions, sensitivity analyses should be carried
out to confirm the validity of associated supportability decisions and estimates.

D.2.5.3 Identify Proprietary Data. All elements of the software support process model (as
described in clause 11) should be checked in order to identify any design rights, licensing
requirements or constraints associated with the use, replication or modification of software.
Executable code, source code, documentation and software tools should all be considered.
Contingencies should be identified and costed to ensure appropriate support is available for all
SSSI.

D.2.5.4 Supportability Objectives & Associated Risks. Establishment of supportability, cost
and readiness objectives for the system should take account of all modes of software operation
and support.

(a) Operational objectives should be established relating to manpower and time requirements
for software operating modes specific to system support or configuration (eg data transfers,
menu configuration, etc).

(b) Software support objectives should be established relating to software installation times;
re-set, re-run or re-boot times; software failure frequencies; software release frequencies;
software modification effort, skill and aptitude constraints; software change traffic; change
implementation duration; tools and facility costs; software support policy.

Clause 12 describes the approach to be taken to the quantification of software support
resources. Estimates of software modification productivity, software fault density and
software change traffic involve significant uncertainties. In particular, significant risks might
be associated with any assumptions regarding productivity or software integrity improvements
obtained from changes in technology or the application of new tools.

D.2.5.5 Specification Requirements. Supportability constraints and requirements should be
established for software elements of the new system for inclusion in system and software
specifications, requirements documents and contracts. The following topics should be
considered:

(a) Requirements for specific modes of software operation to enable local system changes to
be made (eg configurable menus, maintainer adjusted data).

(b) Requirements or constraints on system and software behaviour in the event of a failure
(eg to provide system or software tolerance of particular types of faults, to ensure fail safe
behaviour, or to provide meaningful but unobtrusive error messages as an aid to fault
diagnosis).

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-7

(c) Requirements or constraints on system design and software requirements (eg to
standardize target hardware and operating systems or to ensure interoperability with other
systems/subsystems).

(d) Requirements or constraints on the software development process (eg definition of
methods, languages and tools, documentation requirements).

(e) Constraints and requirements on software support (eg specification of the required
software support policy, design authority/intellectual property rights constraints).

Conduct of Software Support Analysis (as described in clause 11) may be used to assist in the
identification of specification requirements and constraints.

D.2.5.6 Supportability Goals and Thresholds. Software supportability, cost and readiness
objectives, goals and thresholds should be updated as alternative system designs gain
definition or as more evidence is obtained about requirements stability, software size, software
productivity and software integrity.

D.3 300 Series Tasks

D.3.1 Task 301 - Functional Requirements Identification

D.3.1.1 Functional Requirements. All functions relating to software operation and support
should be identified and documented - this should be carried out for each of the alternative
systems and support systems under consideration. Functions that should be considered
include:

(a) Functions relating to the support of the system; for instance data transfer and installation
and configuration of software.

(b) Functions relating to re-starting, re-setting or re-booting the system following a software
failure - including any fault reporting and investigation functions.

(c) Functions relating to the software modification process; for instance, requirements
analysis, fault diagnosis, design, implementation, verification and validation (including
regression testing), documentation, transfer and replication.

The software support process model, as described in clause 11, may be used to assist in the
identification of support functions.

D.3.1.2 Operations and Support Tasks. All likely mission profiles and operational and
support scenarios should be analyzed to identify operation and support tasks to be included in
the system task inventory. The software support process model, as described in clause 11,
may be used to assist in the identification of software support tasks.

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-8

The task inventory should include software support activities for all software within the
system and for the software used in the support process. It will be possible to refine the task
descriptions as the system design and the approaches to operation and support become better
defined.

Software modification tasks - such as analysis, design, coding and test - will be generic,
although their actual scope will depend upon the nature of the modification in question.

D.3.1.3 FMECA. The system FMECA input to the LSAR should include software failure
modes. Software failures will typically initiate 2 distinct types of support task: the immediate
support activities necessary to restore the system to its pre-failure state and the longer term
software modification process. SSA, as described in clause 11, will use the results of the
system FMECA to help define the support activities that are necessary. (It should be
remembered that SSA will also take into consideration a wide range of other change drivers,
such as operational environment changes and hardware environment changes etc.)

Detailed consideration of the failure effects caused by particular software faults is unlikely to
be beneficial to the identification of support tasks.

D.3.1.4 RCM. RCM is not applicable to software.

D.3.1.5 Design Alternatives. Identification and analysis of tasks required for the operation
and support of software may be used to provide feedback into the system specification or
design at various phases of the life cycle as follows:

(a) Requirements for software modification may be alleviated by adding requirements for
selectable modes of software operation to enable user control over software functional
configuration or program variables.

(b) Changes to system architecture may provide a means of removing or simplifying some
software support tasks.

(c) Hardware design may be affected in respect of the provision of suitable access for
installation and upgrade of software or to improve facilities for re-setting, re-running, or re-
booting systems.

D.3.2 Task 302 - Support System Alternatives

D.3.2.1 Alternative Support Concepts. Software support requirements should be considered
in the development of options for overall system support. A range of alternative software
support concepts should be considered although the feasible options might in practice be
limited depending on the nature of the procurement. A software support process model, as
described in clause 11, should be used to check that all elements of the software support
process have been addressed.

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-9

D.3.2.2 Alternative Support Plans. Software support requirements that do not involve design
modifications should be included within overall system support plans. Software modification
plans should be developed and documented to levels of detail commensurate with system
development. Software modification plans should cover the following:

(a) Assumptions, targets and requirements regarding software release frequencies and
response times.

(b) Details of what software items are to be modified, where modification is to be carried out
and who is to conduct the modifications together with a description of the modification
process.

(c) Identification of the modification team size and the skills required.

(d) Identification of consumables and parts required for the conduct the software
modification, the replication and transfer of software products, and the support of software
modification tools and equipment.

(e) Definition of the hardware and software items required for software modification,
software and system testing, replication and transfer.

(f) Identification of the documentation to be used and/or maintained as part of the software
modification process.

(g) Identification of training requirements (courses, durations, frequencies, etc) for the
software modification team. The use and design of the software to be supported should be
considered together with the software engineering methods, languages and tools to be used.

(h) Identification of the facilities required by the project support environment and any related
constraints.

(i) Definition of the process for replication and transfer of the software including packaging,
handling, storage and transport provisions.

D.3.3 Task 303 - Evaluation of Alternatives and Trade-off Analysis

D.3.3.1 Trade-off Criteria. Trade-off decisions resulting from the evaluation of alternative
software designs and alternative software support systems should be made in the context of
their impact upon the system as a whole.

The design of the software and the software support system may contribute to system
supportability, cost, readiness etc. For example, the cost of appropriately skilled manpower,
training and tools for software support contributes to overall system support costs.

Any models and assumptions used in the definition of trade-off criteria and in the completion
of trade-off analyses should be documented. Sensitivity analyses should be carried out in

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-10

respect of variables that have a high degree of uncertainty. Such variables include: software
failure rate, change traffic, productivity, software size.

Evaluations and trade-offs should be updated as necessary through the life of the project to
reflect latest estimates, revised assumptions and improved models.

D.3.3.2 Support System Trade-Offs. Support system evaluations and trade-offs should give
consideration to all software embodiment, pre-mission preparation, post-mission recovery and
configuration management requirements. Evaluations and trade-offs should be conducted
between alternative software modification policies. Issues such as cost, response times,
priorities, inter-operability, safety integrity, personnel and training requirements, tools and
facilities should be considered.

D.3.3.3 System Trade-Offs. Trade-offs and evaluations of alternative system designs should
give appropriate consideration to their impact on software support. For example, system
architectures may influence software support by affecting the number of software items, the
means by which they are installed or configured for use. The way in which functions are
partitioned between software items may also influence software modification requirements
and/or constraints.

D.3.3.4 Readiness Sensitivities. Software support, in particular pre-mission preparation and
post-mission recovery, should be considered during system readiness trade-offs. Activities
such as data loading, system re-booting and software installation etc should, as far as possible,
be assessed for their effect upon system readiness.

D.3.3.5 Manpower and Personnel Trade-Offs. Software support activities should be
considered alongside hardware support activities in manpower and personnel trade-off
analyses. Skill levels required for software embodiment, pre-mission preparation and post-
mission recovery will depend upon the methods of software installation and data loading
detailed in the system design. Estimates of software modification effort will depend upon
assumptions about change traffic, productivity, size, methods, tools and software integrity etc.
Further information is provided under the heading 'Software Supportability Factors' in clause
8.

D.3.3.6 Training Trade-Offs. Training requirements for all aspects of software support
should be considered along with the overall training requirements for the system. Different
support options might require relatively more or less investment in such training provision.
For example, where the system developer undertakes the support function there might be little
or no visible training time and costs, whereas for customer provided support there might be a
need for both basic and specialist training, with a lengthy 'on-the-job' element. Training
requirements should also take account of likely staff turn-over rates.

D.3.3.7 Repair Level Analyses. Software support activities such as software embodiment,
pre-mission preparation, post-mission recovery and data loading should be included in system
repair level analyses. However, software modification cannot be treated in the same way as

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-11

hardware repair and the approach outlined in clause 11.6.2 should be adopted. Software
modification will typically be undertaken at separate facilities from hardware maintenance.

D.3.3.8 Diagnostic Trade-Offs. Software may include features to assist in the diagnosis of
faults (eg to provide error messages or records of processor status and memory contents). The
provision of diagnostic facilities might affect usability and performance; for instance, software
performance could be degraded by the diversion of computing resources to monitor processor
status and memory content. Trade-off analyses should be conducted to determine the
optimum level and type of software diagnostic support.

D.3.3.9 Survivability Trade-Offs. Certain hardware design features may be provided as a
protection against particular modes of system failure, combat damage and human error; for
instance, the specification of levels of redundancy. Similarly, software diversity, error traps
and fault tolerance may be used to provide protection against the effects of software faults,
human errors and certain hardware failures. System designs should ensure that hardware and
software behaviours in the event of a fault are compatible and that the intended fault tolerance
is realised. The inclusion of fault tolerance in a system, whilst reducing or controlling the
effect of given faults, will add to the complexity of the system design, thereby increasing costs
and fault rates. Trade-off analyses should be conducted to select the optimum level and type
of fault tolerance.

D.3.3.10 Transportability Trade-Offs. Transportability trade-off analyses should review the
transfer of software and data during system operation and between all elements of the
software support process. Costs, transfer times, security constraints, interfaces, exchange
formats, equipment and manpower should all be considered for each potential software
transfer option. Transportability trade-offs should consider requirements and constraints
necessary to safeguard the integrity and security of the software being transferred. Trade-offs
should also take account the disposal or return of software transfer media.

D.4 400 Series Tasks

D.4.1 Task 401 - Task Analysis

D.4.1.1 Task Analysis. A detailed task analysis should be carried out for each software
operation and support task within the overall system task inventory. For software support
tasks:

(a) Identify and quantify manpower, skills and training, tools, parts, documentation and data
necessary for the conduct of each task based upon documented assumptions regarding change
traffic, release frequencies and productivity.

(b) Determine any elapsed time requirements for each task.

(c) Determine the maintenance level, or location, at which the task is to be conducted.

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-12

(d) Identify any outputs, media or by-products of the software servicing activity that are
subject to storage or disposal constraints for safety, environmental, security or other reasons.

(e) Identify the software design authority (and the need for licences, IPR, etc).

The software support process model described in clause 11 may be used to assist in the
identification of software support tasks.

D.4.1.2 New/Critical Support Resources. Requirements for new or critical resources
necessary for the completion of software support or operation tasks might include:

(a) Personnel to conduct and manage software operations and support for large computer
systems and networks (eg allocation of user accounts, performing back-ups).

(b) Tools to enable the embodiment of software in the target hardware (eg PROM blowers).

(c) Software engineering and application area skills necessary to conduct software
modification.

(d) Hardware and software tools and data to permit the maintenance of software
specifications and designs, the modification and compilation of source code, software
verification and validation and software and system testing.

D.4.1.3 Training Requirements & Recommendations. Training for software operation and
support should be considered as part of the overall system training requirement. The
following points should be borne in mind:

(a) Managers of complex, multi-user computer networks might need specific training in the
administration and operation of the system.

(b) Personnel involved in software modification will typically require training in the methods,
tools and technology involved, as well as in the application area and the design of the subject
software item.

(c) Standard classroom courses might be available for training in languages, software
engineering methods and the use of particular tools. Additionally 'On-the-job' training might
be needed to cover the application area and the design of the subject software item.

(d) Training requirements for software modification teams should identify general
requirements applicable to all team members and specific requirements applicable to
particular appointments within the team. Requirements for the generation and maintenance of
training material for familiarization and 'on-the-job' training should be identified.

D.4.1.4 Design Improvements. The scope for the introduction of design changes to improve
software supportability will be severely limited once the system functionality and architecture
have been defined. Prior to this point, assessment of high level task analyses should be

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-13

carried out to generate recommendations for alternative system architectures, software
requirements and software support policies. Assessment of lower level task analyses should
also be carried out in order to generate recommendations for alternative detailed designs and
hardware and software implementations.

D.4.1.5 Provisioning Requirements. Software operation and support tasks should be
examined to determine requirements for hardware, firmware, transfer media and back-up
copies of software. Consideration should be given to the impact of software releases on
hardware spares provisioning.

Requirements for software modification might depend upon the scale of the project support
environment and the criticality of the time scales for the production of new releases.
Consideration should be given to initial provisioning requirements for software development
hardware, test rigs, software tools and equipment. Requirements for back-up and/or archive
copies of software files and software tools should be included in the provisioning
requirements.

D.4.1.6 Validation. At the earliest opportunity support resource requirements should be
confirmed and measurements should be made of times for completion of all software
operation and support tasks. Where such measurements are dependent upon the system state
or operating conditions, averages should be determined over a range of conditions. If
measurements are based on non-representative hardware or operating conditions, appropriate
allowances should be made and representative measurements carried out as soon as possible.
The frequency of some software support tasks will be dependent upon the frequency of
software releases and the failure rate exhibited by the software.

Measurements of software failure rates and fault densities obtained during software and
system testing might not be representative of those that will arise during system operation.
However, such measurements may be used, with caution, in the validation of models and
assumptions.

For repeatable software engineering activities, such as compilation and regression testing, the
time and resource requirements that arose during development should be recorded. Such
information may be used to validate estimates for equivalent elements of the software
modification process.

For other software engineering activities, such as analysis, design and coding, the time and
resource requirements that arose during development should be recorded. However, such
information should only be used with some caution in the validation of estimates for
equivalent elements of the software modification process.

The preceding clauses might imply the need for a range of metrics that are not catered for as
data elements within the LSAR. Guidance on the approach to be adopted is provided in
Clause 12 under the heading 'Use of Software Metrics'.

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-14

D.4.2 Task 402 - Early Fielding Analysis

D.4.2.1 New System Impact. New systems with an extensive software content might have a
significant impact if existing systems contain little or no software. Lesser impacts will arise if
existing systems already contain software. New systems with large scale software
modification requirements may generate significant requirements for new facilities, equipment
and personnel; alternatively, they may have a significant impact on other systems already
making use of such facilities. Potential areas of impact include:

(a) New skill requirements for operators and system support staff.

(b) New types of hardware and software for software transfer, replication and installation.

(c) New procedures and processes for software and firmware configuration management, data
management, back-ups and archives.

(d) Functionality, performance and reliability problems arising from the addition of new
software to an existing system (possible sources of problem include: mixture of operating
systems, network incompatibilities, increases in network or computer system loading).

(e) Software modification requirements for facilities, development platforms, personnel,
tools, test rigs, etc.

D.4.2.2 Sources of Manpower & Personnel Skills. Where software support requires
significant additional manpower or skills the impact on existing support resources should be
analyzed. Software support may generate specific manpower requirements in the following
areas:

(a) Software operation, system management and data handling for large/complex computer
systems (typically multi-purpose, multi-user).

(b) Software modification for large software items.

Operators of extant computer systems may provide a source of manpower for operation,
support and modification of a new or expanded system. Training might be required in new
technologies, applications, methods and languages. Existing staff may provide a suitable core
for 'on-the-job' training and supervision of additional personnel. Teams used for software
development might provide suitable skilled personnel for software modification.
Consideration should be given to system needs during transition periods when both old and
new systems might need to be supported.

D.4.3 Task 403 - Post Production Support Analysis

D.4.3.1 Post Production Support Plan. Providing for software operation and support
throughout the useful life of a system presents particular problems. The likelihood of various

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-15

problems arising should be assessed and plans should be formulated to assure the continued
support of the system through out its life. The following issues should be considered:

(a) Tools and media used for the transfer of software from the host to the target and for the
replication of software might become obsolete. The storage life of magnetic media might
preclude the initial provisioning of sufficient items to ensure supply throughout the system's
life.

(b) Hardware and software elements of the PSE might become obsolete; it might become
necessary to maintain an obsolete host platform, for which parts and support are no longer
available, in order to continue to run a particular version of an item of support software.
Upgrades to elements of the PSE might be necessary to retain compatibility both within the
PSE and with external interfaces and to ensure continued vendor support.

(c) Developments in software engineering might render certain skills obsolescent - for
example language or design method skills - and suitable training might cease to be available.

(d) The ability to carry out software modifications depends upon the continued validity of
appropriate licences and IPR arrangements. Some of these rights might be vested in third
parties.

(e) Verification and validation (including certification) of the system might be required
following software modification. This might require continued access to, and support of,
system test rigs, equipment and facilities.

Assurance of continued software support is best provided through the anticipation of likely
problems and the development of appropriate contingency plans. This topic is discussed
further under the 'Tools and Methods' supportability factor in clause 8.

D.5 500 Series Tasks

D.5.1 Task 501 Supportability Test, Evaluation and Verification

D.5.1.1 Test and Evaluation Strategy. Strategies for the evaluation of system supportability
should include coverage of software operation and software support. Direct measurements
and observations may be used to verify that all operation and support activities - that do not
involve design change - may be completed using the resources that have been allocated.
During the design and implementation stage measurements may be conducted on similar
systems, under representative conditions.

As software modification activity is broadly similar to software development the same
monitoring mechanism might be used both pre- and post-implementation. Such a mechanism
is likely to be based on a metrics programme that provides information, inter alia, on the rate
at which software changes are requested and on software productivity.

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-16

D.5.1.2 System Support Package Component List. The System Support Package component
list should include all software operation and support resources, including all elements of the
PSE, that will be evaluated/tested during software development, software production,
operational tests and system logistic demonstrations. The component lists will include:

(a) The software development platform.

(b) Test equipment, rigs and data.

(c) Facilities, hardware and software tools.

(d) Documentation and source code.

(e) Licences, design rights, etc.

(f) Replication and transfer equipment.

(g) Processes, procedures and controls (quality assurance, configuration management).

(h) Consumables and parts.

(i) Training and skills.

(j) Personnel requirements.

D.5.1.3 Objectives and Criteria. System test and evaluation programme objectives should
include verification that all operation and support activities may be carried out successfully -
within skill and time constraints - using the PSE and other resources that have been defined.
The objectives, and associated criteria, should provide a basis for assuring that critical
software support issues have been resolved and that requirements have been met within
acceptable confidence levels. Any specific test resources, procedures or schedules necessary
to fulfil these objectives should be included in the overall test programme. Programme
objectives may include the collection of data to verify assumptions, models or estimates of
software engineering productivity and change traffic.

D.5.1.4 Updates and Corrective Actions. Evaluation results should be analyzed and
corrective actions determined as required. Shortfalls might arise from:

(a) Inadequate resource provision for operation and support tasks.

(b) Durations of tasks exceeding allowances.

(c) Software engineering productivity not matching expectations.

(d) Frequencies of tasks exceeding allowances.

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONTINUED)

D-17

(e) Software change traffic exceeding allowances.

Corrective actions may include: increases in the resources available; improvements in
training; additions to the PSE or changes to the software, the support package or, ultimately,
the system design. Although re-design of the system or its software might deliver long term
benefits it would almost certainly lead to increased costs and programme slippage.

D.5.1.5 Supportability Assessment (Post Deployment). Data on software failure rates,
software fault report rates, software change traffic and software modification productivity etc
should be analyzed in order to verify the achievement of supportability goals. Corrective
actions that might be required should be investigated and appropriate recommendations
raised.

DEF STAN 00-60 (PART 3)/3
ANNEX D (CONCLUDED)

D-18

Collation Page

Inside Rear Cover

 © Crown Copyright 2004

Copying Only as Agreed with DStan

 Defence Standards are Published by and Obtainable from:

Defence Procurement Agency
An Executive Agency of The Ministry of Defence

Directorate of Standardization
Kentigern House
65 Brown Street

GLASGOW G2 8EX

DStan Helpdesk

 Tel 0141 224 2531/2
 Fax 0141 224 2503

 Internet e-mail enquiries@dstan.mod.uk

File Reference

The DStan file reference relating to work on this standard is D/DStan/21/60/3

Contract Requirements

When Defence Standards are incorporated into contracts users are responsible for their correct
application and for complying with contractual and statutory requirements. Compliance with
a Defence Standard does not in itself confer immunity from legal obligations.

Revision of Defence Standards

Defence Standards are revised as necessary by up issue or amendment. It is important that
users of Defence Standards should ascertain that they are in possession of the latest issue or
amendment. Information on all Defence Standards is contained in Def Stan 00-00 Standards
for Defence Part 3 , Index of Standards for Defence Procurement Section 4 ‘Index of Defence
Standards and Defence Specifications’ published annually and supplemented regularly by
Standards in Defence News (SID News). Any person who, when making use of a Defence
Standard encounters an inaccuracy or ambiguity is requested to notify the Directorate of
Standardization (DStan) without delay in order that the matter may be investigated and
appropriate action taken.

	CONTENTS
	PREFACE
	Section One. General
	0 Introduction
	1 Scope
	2 Related Documents
	3 Definitions
	4 Abbreviations
	5 The Software Life-Cycle
	6 Management and Planning
	7 Tailoring
	8 Software Supportability Factors

	Section Two. Application of LSA to Software
	9 Introduction
	10 Early Project Phase Activity
	11 Software Support Analysis
	12 Software Support Resource Requirements
	13 Software Support Planning
	14 Applicability of LSA Tasks to Software

	ANNEX A
	ANNEX B
	ANNEX C
	ANNEX D

