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REQUIREMENTS FOR SAFETY RELATED SOFTWARE IN DEFENCE
EQUIPMENT

PART 2: GUIDANCE

PREFACE

This Part 2 of Def Stan 00-55
Supersedes INTERIM Def Stan 00-55 (Part 2)

i This Part of the Standard contains guidance on the requirements contained in Part 1.
This guidance serves two functions: it elaborates on the requirements in order to make
conformance easier to achieve and assess; and it provides technical background.

ii This Standard is one of a family of standards dealing with safety that is being developed
or adopted by MOD, taking into account international standardization activities and
supporting research and development.

iii This Standard has been agreed by the authorities concerned with its use and is intended to
be used whenever relevant in all future designs, contracts, orders etc and whenever
practicable by amendment to those already in existence.  If any difficulty arises which
prevents application of this Defence Standard, the Directorate of Standardization shall be
informed so that a remedy may be sought.

iv Any enquiries regarding this Standard in relation to an invitation to tender or a contract in
which it is incorporated are to be addressed to the responsible technical or supervising
authority named in the invitation to tender or contract.

v This Standard has been devised for the use of the Crown and its contractors in the
execution of contracts for the Crown.  The Crown hereby excludes all liability (other than
liability for death or personal injury) whatsoever and howsoever arising (including, but
without limitation, negligence on the part of the Crown its servants or agents) for any loss or
damage however caused where the Standard is used for any other purpose.
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REQUIREMENTS FOR SAFETY RELATED SOFTWARE IN DEFENCE EQUIPMENT

PART 2:  GUIDANCE

Section One.  General

0 Introduction

This Part of the Defence Standard provides guidance on the requirements in Part 1.  From
section two onwards, this guidance is organized by the main clause and subclause headings
used in Part 1; however, subsubclauses do not necessarily correspond exactly between the two
Parts.

1 Scope

1.1 This Part of the Standard provides information and guidance on the procedures necessary
for the production of software of all levels of safety integrity.  However, it places particular
emphasis on describing the procedures necessary for specification, design, coding, production
and in-service maintenance and modification of Safety Critical Software (SCS).

1.2 It should be emphasized that safety is a system property and achieving and maintaining
safety requires attention to all aspects of the system, including its human, electronic and
mechanical components.  This Standard addresses only one important component - ie the
development of software to meet a predetermined safety integrity level.  The achievement of
safety targets by overall design, and in particular whether safety features are to be controlled
by hardware, software or manual procedures, is not addressed.  A systems approach to hazard
analysis and safety risk assessment is explained in Def Stan 00-56.

1.3 Where safety is dependent on the safety related software (SRS) fully meeting its
requirements, demonstrating safety is equivalent to demonstrating correctness with respect to
the Software Requirement.  In other cases, safety may be dependent on the SRS behaving in
accordance with an identifiable set of safety requirements, contained within the Software
Requirement, rather than correctness with the total Software Requirement to provide the
required safety integrity level.  Because of the difficulties of separating safety properties from
the other behavioural properties of the SRS and the need to demonstrate adequate partitioning
between these properties, this Standard tends towards the former approach and assumes that
correctness is equivalent to safety.  However, providing that safety can be achieved and
demonstrated, overall correctness need not be an objective from a safety point of view.

2 WARNING

This Standard refers to a number of procedures, techniques, practices and tools which when
followed or used correctly will reduce but not necessarily eliminate the probability that the
software will contain errors.  This Standard refers only to technical suitability and in no way
absolves either the designer, the producer, the supplier or the user from statutory and all other
legal obligations relating to health and safety at any stage.

3 Related Documents

The related documents identified in Part 1 also apply to this Part of the Standard.
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4 Definitions

The definitions in Part 1 apply also to this Part of the Standard.
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Section Two.  Safety Management

5 Safety Management Activities

No guidance.

6 Software Safety Plan

6.1 No guidance.

6.2 No guidance.

6.3 The contents of the Software Safety Plan should be as detailed in annex B.1.  On some
projects with a particularly long timescales it may not be possible to specify CVs of key
individuals nor specify the qualifications required of all the staff who might be involved with
the production of the SRS.  This could be considered when agreeing the Software Safety Plan
with MOD.

6.4 No guidance.

7 Software Safety Case

7.1 General

7.1.1 A key product of the SRS development is the Software Safety Case.  The Software
Safety Case is a readable justification that the SRS is safe in its specified context; ie that it
meets its requirements insofar as they impact on safety.  In an MOD context, it should
facilitate the acceptance of the SRS by the MOD PM and any regulatory or safety bodies
involved.  The content of the Software Safety Case should be as detailed in annex B.2.

7.1.2 In practice there will be several different audiences for the Software Safety Case
during the project lifecycle, each with their own viewpoint, and these will require different
levels of detail.  The Software Safety Case should therefore be structured to allow it to be
read at different levels of depth.  The Software Safety Case should also contain system level
information that assists the reader in understanding the context of the SRS and in judging the
adequacy of the arguments presented in the Software Safety Case.  Detailed supporting
evidence should be recorded in the Software Safety Records Log.

7.1.3 The Software Safety Case includes feedback from in-service performance because it
is of great value in confirming or otherwise the original safety case and the effectiveness of
the safety and software engineering techniques deployed, but depends upon accurate
monitoring, recording and analysis.  It can also provide important evidence for improving the
SRS development process and demonstrating ALARP. This Standard therefore requires a
DRACAS to be set up (see clause 42).

7.1.4 This Standard requires an appraisal of in-service experience with relevant variants of
the equipment.  It may be convenient to structure the Software Safety Case for the variants as
one safety case with common chapters for those aspects common to the variants.
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7.1.5 The major sources of information used in constructing the Software Safety Case are
shown in guidance annex E.

7.1.6 Figure 1 illustrates how the key documents concerning the safety issues are related
to one another. Because this is a summary, only the top-level documents are included.
Reference should be made to the relevant clauses of the Standard for more detailed
descriptions and definitions.

7.1.7 The Software Requirement and Hazard Log are system level documents that form
inputs to the SRS development process.  The Software Requirement contains the
requirements which, if met by the SRS, ensure that the SRS will operate in a safe manner.
The Hazard Log catalogues the hazards that have been identified from the operation of the
system within which the SRS is to operate and, consequently, enables possible unsafe
behaviours of the system to be associated with the way in which the SRS operates.

7.1.8 The Software Safety Plan describes the means by which the safety requirements that
are embodied in the Software Requirement and in the Hazard Log are to be discharged.

Software
Requirement

Software
Safety
Plan

Hazard
Log

Software
Safety

Records Log

Development
and V&V Plans,
Code of Design

Practice

Software
Safety
Case

Specification,
Design and Test

Records

Reference

Derivation

Figure 1:   Top Level Document Structure

7.2 Development of the Software Safety Case

7.2.1 The Software Safety Case will form a part of the safety case for the system.  This
contains a justification that the requirements for the SRS include requirements which, if met,
will ensure the safety of the SRS component of the system.

7.2.2 The Software Safety Case evolves during SRS development to take account of the
evidence that is accumulated and any changes to the Software Safety Plan.
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7.2.3 The Software Safety Case is a living document that is formally issued at defined
project stages to the MOD PM.  The development of the Software Safety Case will proceed
through a number of stages of increasing detail as the project progresses.  At the beginning of
a project confidence is required, before committing significant resources, that there is
minimal risk of failing to meet the safety requirements.  During the project confidence is
required that the safety requirements are being met; and during use confidence is required that
the equipment is safe and continues to be safe as the operational requirements and the
environment change.

7.3 Safety arguments

7.3.1 The justification of how the SRS development process is expected to deliver SRS of
the required safety integrity level, mainly on the basis of the performance of the process on
previous projects, is covered in 7.4 and annex E.  However, in general the process used is a
very weak predictor of the safety integrity level attained in a particular case, because of the
variability from project to project.  Instrumentation of the process to obtain repeatable data is
difficult and enormously expensive, and capturing the important human factors aspects is still
an active research area.  Furthermore, even very high quality processes only predict the fault
density of the software, and the problem of predicting safety integrity from fault density is
insurmountable at the time of writing (unless it is possible to argue for zero faults).

7.3.2 However, some aspects of the process, such as the construction of formal arguments
and statistical validation testing, do provide a direct measure of the safety integrity level of
the SRS.  Part 1 of this Standard requires that the attainment of the target safety integrity level
of the SRS is argued by means of these direct measures.

7.3.3 There are two basic types of safety argument:

a) Analytical arguments, which are:

i) formal arguments that the object code satisfies the formal specification and that the formal
specification complies with the safety properties in the Software Requirement;

ii) arguments based on analysing the performance of the constituent parts of the system and
from these inferring the performance of the system as a whole.

b) Arguments based on observing the behaviour of the SRS.

7.3.4 These arguments are diverse in the sense that they are based on different evidence and
use different analysis methods with different underlying assumptions. Both types of argument
are required by the Standard because of the coverage, fallibility and uncertainty associated
with any single argument, especially when the Software Design Authority is attempting to
justify very small probabilities of failure (for example one failure in 105 years ).
Straightforward adherence to this Standard will enable analytical arguments to be made using
formal methods, and observational arguments to be made from statistical validation testing.

7.3.5 The Software Design Authority may in addition be able to employ other arguments,
which may make it easier to justify the attainment of the highest safety integrity levels.  The
possible safety arguments are listed in table 1, with an indication of the way they scale with
software size and safety integrity level, the assumptions on which they are based, their
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7.3.5 (Cont)

limitations, and the maximum safety integrity level for which they are practicable and are
likely to give adequate assurance. Expanded information on safety arguments is given in
annex E.

7.4 Justification of the SRS development process

7.4.1 The Software Design Authority should justify how the SRS development process is
expected to deliver SRS of the required safety integrity.  Annex E provides further guidance.

7.4.2 A safety analysis of the SRS development process described in the Code of Design
Practice and Software Safety Plan should be carried out, explaining how each technique will
contribute to the assurance of the SRS at the applicable process stages.  The analysis should
include a description of the fault avoidance techniques to be applied, such as the use of a
strongly-typed programming language to avoid certain programming faults.  It should also
address the independent checks that may be possible, and the possibility of human error in
applying these checks.

7.4.3 Historical evidence from previous projects and/or the published literature should be
presented to show that highly dependable software has been successfully produced using such
a development process. More details are provided in annex E.

The use of commercial off-the-shelf (COTS) or other previously developed software should
be justified, and the way in which it contributes to the final safety integrity of the SRS
explained.
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Table 1  Safety Arguments

Argument Scaling with size and safety
integrity level (SIL)

Assumptions and limitations Max
SIL

Formal
arguments

About linear with code size.  Limited
complexity of application. Some
resource related properties or
concurrent aspects difficult to
address.

Policy for formal proof vs. rigorous
arguments needs careful justification.

Evidence very strong for properties
amenable to this approach.

Very dependent on system design.

Validity of rigorous arguments for
assurance (as opposed to
development) hard to quantify.

4

Validation
testing

Effort increases with complexity of
equipment by an order of magnitude
for each SIL.  Highest SILs require
multiple copies and/or accelerated
testing.

Practicable up to SIL 4 for systems
that respond to demands (eg shut-
down systems);impracticable over
SIL 1 for continuously operating
systems.

Operational profile may be hard to
justify.

Potentially high costs of checking
results and significant elapsed time.
Costs of repeating tests following
minor changes can be significant.

4

Exhaustive
testing

Not dependent on SIL but very
sensitive to complexity of software.

Unlikely to be practicable except for
special cases, which may be readily
tractable by proof anyway

4

Fail safety Independent of size or SIL in theory,
but technique may require use of
encryption and specialised hardware
that makes it hard to scale up.

Very appealing for fail safe
applications but usually only applied
to certain fault classes, eg to
compiler and hardware faults.

4

Experience
in similar
environment

The amount of experience needed
increases with an order of magnitude
for each SIL.  Only viable normally
for systems with multiple copies.

Limitations of reporting schemes,
problems in justifying similarity of
environment.

Normally only applicable for
continuously operating systems or
those with frequent demands placed
on them.

May be appealing for mass produced
components in environments that do
not change (eg operating system
firmware).

2/3
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8 Safety Analysis

8.1 General

8.1.1 The safety of the SRS cannot be considered in isolation from the system as a whole, and
safety analysis therefore has to begin at the system level.  The  requirements for safety
analysis are given in detail in Def Stan 00-56, but in outline the process is as follows:

a) Determine the tolerable safety risk from the equipment.

b) Identify and analyse the potential accidents involving the equipment, and the associated
hazards.

c) Design the equipment to remove or reduce the hazards so that the tolerable safety risk is
not exceeded.  This includes:

i) specifying any safety features that may be required;

ii) apportioning safety integrity levels to hardware and software components;

iii)defining the strategy for fault detection, fault tolerance and fail safety as 
appropriate, including any requirements for technological diversity or segregation.

8.1.2  This process is carried out iteratively at increasing levels of detail as the equipment is
developed, by the Design Authority on the equipment as a whole, and by the Software Design
Authority on the SRS components.

8.1.3 Safety analysis of the SRS includes establishing the correct safety integrity level for
each software component.  Safety integrity is a measure of the likelihood of dangerous failure,
and therefore may differ from reliability, which refers to the likelihood of delivering the
specified, operational service.  Equipment may be safe but unreliable, for instance if fail safe
actions keep occurring; or it may be reliable but unsafe, if the few failures that do occur are
mostly dangerous.

8.1.4 Safety integrity is defined as four levels, S1 to S4, where S1 is the least critical and S4
is safety critical.  Def Stan 00-56 describes a process for defining these levels, and provides
guidance on numerical  values.  Safety integrity levels are also addressed in IEC 1508, where
they are defined in terms of the probability of dangerous failure on the basis of a judgement
about the levels of safety integrity achieved in practice.  These definitions are summarised in
table 2, which provide the combined probability of failure from all causes, including, for
example, hardware wear-out failures and programming errors.

8.1.5 Under certain circumstances, the safety integrity level of a system may be reduced by
means of technological diversity such as the use of a hardware component to provide essential
safety functions.  Def Stan 00-56 contains the rules for this.
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Table 2  Failure Probability for Different Safety Integrity Levels

Safety integrity level Safety integrity
(probability of dangerous failure per year,
per system)

S4 � 10-5 to < 10-4

S3 � 10-4 to < 10-3

S2 � 10-3 to < 10-2

S1 � 10-2 to < 10-1

8.2 No guidance.

8.3 No guidance.

9 Software Safety Records Log

The Software Development Plan, the Software Verification and Validation Plan and the Code
of Design Practice between them determine the way in which the SRS is developed and
verified.  The methods, procedures and practices have an impact on the integrity of the SRS
and these documents will therefore be required by the Software Safety Plan and referenced by
the Software Safety Case.  Detailed evidence that the plans and practices have been followed
are accumulated in such forms as design records, records of reviews and results of V&V.
These are referenced by the Software Safety Records Log and contribute to the Software
Safety Case. Guidance on the supporting analyses is provided in annex E.

The contents of the Software Safety Records Log should be as detailed in annex B.3.

10 Software Safety Reviews

10.1 The software safety reviews should be carried out at intervals during the SRS
development process.  During phases of the project in which safety issues have particular
prominence and greatest impact upon the development programme (typically, the earlier
phases) the frequency of software safety reviews is likely to be particularly high.  As an
absolute minimum, there should be a software safety review at the end of each phase.  In
addition to those reviews that are scheduled as a matter of course in the Software Safety Plan,
a software safety review should be convened in the event that safety concerns arise during the
course of the SRS development.  Software Safety Reviews may be included as part of the
normal software review programme and the system safety programme.

10.2 The participants in a software safety review should be all those who can contribute
relevant information or have an interest in the safety of the SRS.  Typically, they will include,
as appropriate:

a)  the Software Project Safety Engineer (as chairman);
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10.2 (Cont)

b) the individual from the Software Design Authority responsible for safety certification
(if different);

c) the Project Safety Engineer (if different);

d) the Software Project Manager (or representative);

e) members of the Design Team;

f) members of the V&V Team;

g) the Independent Safety Auditor (by invitation); h)   the MOD PM (by invitation);

i) representatives of the system users (by invitation).

10.3 The objective of each software safety review should be to review the evidence that
contributes to the Software Safety Case in accordance with the Software Safety Plan.
Software safety reviews should include checks of traceability reviews, especially concerning
any requirements that are particularly related to safety.  Any failures during the SRS
development that might indicate a possible shortfall in the Software Safety Plan or in its
execution should be a particular cause of concern.

10.4 The software safety review should agree any actions that need to be taken in order to
ensure the continued safety integrity of the SRS and its development.  The Software Project
Safety Engineer is responsible for ensuring that these actions are carried out but in many
cases will require the support of the Software Project Manager who should therefore be
represented at the review meetings.

10.5 No guidance.

10.6 No guidance.

11 Software Safety Audits

11.1 Software safety audits provide an independent assessment of the safety aspects of the
SRS and of its development.  The Independent Safety Auditor should take the role of a
customer of the Software Safety Case and the auditing activities should be aimed at
establishing the adequacy and correctness of the arguments made in the Software Safety Case
by analysis of the arguments used, by testing of the evidence presented in supporting
documentation such as the Software Safety Plan and the Software Safety Records Log and by
auditing the project against the standards and procedures being followed.

11.2 The Software Safety Audit Plan should be updated at least at the start of the
specification, design, coding and testing processes.  The contents of the Software Safety
Audit Plan should be as detailed in annex B.4.
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11.3 The contents of the Software Safety Audit Report should be as detailed in annex B.5.
Each Software Safety Audit Report should be available to those whose activities have been
audited.  If, as is likely, a number of  Software Safety Audit Reports are produced during the
course of the SRS development, a summary report should also be produced.
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Section Three.  Roles and Responsibilities

12 General

12.1 Staff involved in the development, verification, validation and audit of SRS, including
management, should be competent in the use for development of SRS of the methods and
tools that are to be used.

Where a particular responsibility is allocated to a team, the Design Authority should
demonstrate that the team, when taken as a whole, possess the required skills and experience
by virtue of its composition from individuals who have different skills and experience.  In this
case, the roles and responsibilities of the team members should be defined clearly by the
Design Authority in order to ensure that the right combination of skills and experience is
applied to each activity in which the team is involved.

 The extent to which the following factors are addressed should be taken into account when
assessing and selecting personnel against the roles that they are to take in the project:

a) Familiarity with the standards and procedures to be used.

b) Knowledge of the legal framework and responsibilities for safety.

c) Knowledge and experience in safety engineering.

d) Experience of the application area.

e) Experience in software development.

f) Experience in the development of SRS.

g) Experience with the methods, tools and technologies to be adopted.

h)  Education, training and qualifications.

The assessment should include consideration of the length, depth, breadth and relevance of
the knowledge, experience and training.  Training records may be used as a source of some of
this information.

The assessment should take into account the characteristics of the SRS development,
including the integrity required and the extent of novelty to be employed in application,
design concept, development technology and procedures: The higher the level of integrity or
the greater the novelty, the more rigorous should be the assessment.

Whilst continuity of staff is desirable it is recognised that this may not always be feasible.
The factors above need to be investigated for any subsequent appointments. Project-orientated
training should also be provided.

12.2 No guidance.
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13 Design Authority

13.1 No guidance.

13.2 The Design Authority may subcontract the development of the SRS to another
organization.  This subcontractor is referred to in this Standard as the Software Design
Authority.  In cases where the hardware and software of the system are developed by a single
contractor, the Design Authority effectively appoints themselves as the Software Design
Authority.

13.3 No guidance.

14 Software Design Authority

14.1 No guidance.

14.2 No guidance.

14.3 No guidance.

14.4 No guidance.

14.5 No guidance.

14.6 The Software Design Authority certifies the software component of the system to the
Design Authority in order that the Design Authority can have the necessary confidence and
assurance to certify the safety of the system to the MOD.

15 Software Project Manager

15.1 In addition to the specific requirements of this Standard relating to the development of
SRS, the Software Project Manager should employ general principles of good software
project management.

15.2 The Software Project Manager is the Software Design Authority's project manager for
the SRS development project.

15.3 No guidance.

15.4 No guidance.

16 Design Team

16.1 No guidance.

16.2 In addition to the specification, design and coding of the SRS, the Design Team will
often be responsible for the generation and discharge of proof obligations, conducting
preliminary validation and performing static analysis.  The exact division of labour between
the Design Team and the V&V Team will be determined by the Software Design Authority.

16.3 No guidance.
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17 V&V Team

17.1 No guidance.

17.2 It is extremely important that V&V is carried out independently of design, both to
preserve objectivity and to minimize pressure for premature acceptance.  Such independence
also introduces worthwhile diversity into the software production process.  The V&V Team
should be composed of personnel who are independent up to senior management level of
others involved in the project.  V&V will be carried out more efficiently if good lines of
communication at working level exist between the Design Team and the V&V Team, but
these should be set up in such a way that independence is not compromised.

17.3 No guidance.

17.4 The role of the V&V Team is to provide independent V&V of the correctness (and thus
the safety) of the SRS.  Usually the V&V Team will do this by performing dynamic testing of
the SRS and by checking the static analysis of the SRS that is carried out by the Design Team.
The V&V Team may also carry out additional analyses which complement those previously
conducted.  The precise division of such responsibility is not important provided that
independence in the conduct or checking of the testing is demonstrated by the Software
Design Authority.

17.5The checks carried out by the V&V Team may take the form of a full verification of the
correctness of formal arguments.  However, if peer review has been carried out and
documented, the V&V Team may use this evidence to provide an adequate level of
verification by checking the reviews that have been conducted previously.

18 Independent Safety Auditor

18.1 The Independent Safety Auditor may be part of the system independent safety audit
team appointed to audit the safety of the overall system and, especially for projects involving
large quantities of SRS, the role of the Independent Safety Auditor may be taken by a team.
The Independent Safety Auditor should be able to assess the safety of the SRS free from any
possible conflicts of interest.  The necessary independence can best be achieved by using an
independent company but an independent part of the same organization as the Design
Authority or Software Design Authority may be acceptable if adequate technical and
managerial independence can be shown at Director or board level.  In order to avoid possible
conflicts of interest, agreement on the choice of Independent Safety Auditor should be
obtained from all the organizations whose work is to be audited.

18.2 The Independent Safety Auditor should be appointed in the earliest practicable phase of
the project; certainly no later than the project definition phase.  There should ideally be
continuity between the safety assessor for the system containing the SRS and the Independent
Safety Auditor for the SRS development  Typically, the Independent Safety Auditor or
Independent Safety Auditor team leader will possess several years of experience of SRS and
of its implementation in systems, experience in the relevant application area and a standing at
least equivalent to that of a chartered engineer.  Although it is anticipated and highly desirable
that the Independent Safety Auditor will possess a formal qualification of this nature it is not
a mandatory requirement of this Standard because an individual who might be acceptable for
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18.2 (Cont)

the role through their depth of knowledge and experience gained on previous projects may not
hold such a qualification on paper.  Other members of the team, if appropriate, should be
selected to ensure that the team as a whole has adequate experience of the methods, tools and
procedures that the Design Authority proposes to apply.

18.3 The Software Safety Audit Plan should at least be checked to see if it needs to be
updated at the start of each phase of the SRS development.

18.4 The Independent Safety Auditor should be able to obtain information that they consider
to be relevant to the Software Safety Case without encountering any hindrance or delaying
tactics.  Any disputes should be referred to the MOD PM.

18.5 The Software Safety Audit Report may consist of a number of reports produced at
different times or covering different aspects of the project.

18.6 The Independent Safety Auditor (or Independent Safety Auditor team leader) endorses
the SRS Certificate of Design to certify that the SRS has been developed in accordance with
this Standard as qualified in the Software Quality Plan.  Such endorsement does not release
the Design Authority from any responsibility for safety of the SRS: The Independent Safety
Auditor has no overall responsibility for the safety of the software.

19 Software Project Safety Engineer

19.1 The Software Project Safety Engineer may be the same person as the Project Safety
Engineer for the system, referred to in Def Stan 00-56.  In any event, the Software Project
Safety Engineer should have good and direct communications with the Project Safety
Engineer to ensure coherence of safety matters across the system/software boundary.

19.2 The Software Project Safety Engineer should be able to refer to the Independent Safety
Auditor if safety concerns cannot be dealt with within the project management regime.

19.3 If the Software Project Safety Engineer signs the SRS Certificate of Design on behalf of
the Software Design Authority then this additional endorsement is unnecessary.
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Section Four.  Planning Process1

20 Quality Assurance

20.1 In the UK this requirement will be met through ISO 9001 and TickIT certification.
The ISO 9001 and TickIT certification should be regarded as a minimum software quality
requirement for the development of SRS.  In the absence of any higher levels of certification,
the Software Design Authority should also consider the use of other means of demonstrating
the suitability of the software quality system for SRS development, for example by applying a
software engineering process capability assessment model.

20.2 The Software Quality Plan should give details of the quality requirements for the SRS
development and should detail the quality assurance activities. The Software Quality Plan
may be part of, or may be an annex to, a combined software development and quality plan
rather than being a stand-alone document.  The content of the Software Quality Plan should
be as detailed in annex B.6.

20.3 The compliance to this Standard should be detailed in a compliance matrix which
separately addresses each subclause of Part 1 of this Standard.  Each declaration of
compliance should be supplemented by an explanation of how compliance is to be achieved,
if this is not obvious.  Annex D defines the requirements for justification for non-compliance.

21 Documentation

21.1 The objective of documentation is to provide a comprehensive, accessible record of
the SRS and of its development process.

21.2 The relationship between the documents listed in annex B is illustrated in figure 2.
The Software Design Authority may decide, in conjunction with the Design Authority and the
MOD PM, that the information would be better presented using a different contents list to that
given in annex B.  For example, a number of documents may be incorporated into a single
document, provided, firstly, that the complete documentation set incorporates all the contents
detailed in annex B, and, secondly, that there is easy traceability between the annex B
requirements and their incorporation in the actual document set.  However, it is important that
the documentation structure chosen does not adversely affect the possible future need for the
software to be maintained by another organization.  The documentation should consist of a
top-down hierarchy of documents, with each lower level being a more detailed representation
of the previous level.  Repetition of the same information at different levels of the
documentation should be avoided.

21.3 Precise details of the format and layout of documentation should be agreed between
the Software Design Authority, the Design Authority and the MOD PM.  Where there is
conflict between this Standard and the chosen documentation standard, this Standard should
take precedence.  It is good practice in any software development for each plan to refer to all
other relevant plans.

1NOTE: The contents of this Section should be read in conjunction with Def Stan 05-91 and 05-95.
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21.4 A complete and comprehensive documentation set is essential if, for any reason, the
SRS development needs to be transferred to another organization, for example for in-service
support and maintenance.

21.5 In addition to identifying all software that has been developed during the development
of the SRS, the documentation should also identify the precise versions of support software
and hardware used.

21.6 The appropriate time for documentation to be produced is during the activity to which
the documentation relates.  The Software Design Authority's procedures should require the
documentation to be issued prior to commencement of the next dependent activity.
Retrospective preparation is not acceptable.

21.7 In particular, Def Stan 05-91 details the review of documentation. All documents in
the document set are to be reviewed prior to issue.
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22 Development Planning

22.1 Development planning should address issues relating to the whole SRS development,
including the process adopted, the inter-relationships between development processes,
sequencing, feedback mechanisms and transition criteria.

22.2 Experience shows that changes to requirements are likely at some point during the
development of nontrivial software.  In some cases there will be a conscious intention to
change the requirements, for example where an evolutionary development process has been
chosen.  In other cases change may be necessary to take into account some unforeseen change
in the environment in which the software is required to operate. Such changes may be small,
and may not affect the safety requirements of the software, but it is important that the
development planning recognises the possibility for change and identifies the process by
which changes to the requirements will be accommodated and the safety of the software
assured.

22.3 Metrics are essential in order to be able to use past experience to accurately plan a
new development. Metrics are also a useful indication of software quality and hence software
safety.  Relevant metrics include those associated with software development productivity
and those associated with fault discovery.  The identification of the metrics to be recorded
should also indicate the values that are to be expected of each, and the interpretation that is to
be made when the actual values differ from the target or expected values.

22.4 The Software Development Plan should refer to the Software Safety Plan and the
Code of Design Practice. Where the Code of Design Practice is general, the Software
Development Plan should describe how the Code of Design Practice is instantiated for the
particular development. The content of the Software Development Plan should be as detailed
in annex B.7.

23 Project Risk

23.1 For SRS development there is likely to be a connection between project and safety
risk.  This needs to be taken into account during any risk management activity.  In particular,
where actions are required to reduce a project risk (eg a slippage), it is necessary to ensure
that there are no adverse effects on safety.  The risk management process should involve a
continual review of risks and the means to mitigate those risks such that control is maintained
of all factors that may adversely affect the project.

23.2 Where the Software Design Authority already possesses suitable procedures
governing risk management the plan should define how the procedures are to be applied to
the particular project. The Risk Management Plan should be examined to ensure that the
items identified in annex B.8 are included.

23.3 Any implications from the risk analysis relating to software safety should also be
communicated to the Independent Safety Auditor. Any changes to the SRS development as a
result of project risk analysis should be assessed from a safety perspective within a software
safety review (see clause 10).
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24 Verification and Validation Planning

24.1 No guidance.

24.2 No guidance.

24.3 The Software Verification and Validation Plan may be subdivided into separate
Verification and Validation Plans for each phase of the SRS development.  Separate plans
may also be produced for individual V&V activities, such as static analysis or dynamic
testing.  In the case of decomposition in this manner an overview should be provided of the
complete V&V process. The content of the Software Verification and Validation Plan should
be as detailed in annex B.9.

24.4 The acceptance criteria required to be detailed in the Software Verification and
Validation Plan relate to acceptance internal to the SRS development.  Acceptance in this
context means that the particular item is complete, has been developed in accordance with the
Code of Design Practice, has successfully undergone formal verification, static analysis and
unit testing, and is ready for incorporation into the SRS.  Procedures should be defined in the
Code of Design Practice (see annex B) for deciding the extent of the rework necessary in
cases where faults in the SRS have been found during development.  Where such faults are
within the scope of one of the V&V methods, but have been missed by that method, the
procedures in the Software Verification and Validation Plan should require a re-appraisal of
the safety analysis of the SRS development process and a reassessment of existing V&V
results, possibly leading to a repetition of V&V activities throughout the SRS and the
introduction of additional checks.

25 Configuration Management

25.1 The establishment and subsequent management of configuration control of the SRS is
an essential element in maintaining the overall safety integrity of the equipment being
developed.

25.2 Def Stan 05-57 allows for two categories of Engineering Changes, namely
Modifications and Amendments.  Engineering Changes categorised as Amendments require
no specific paperwork or approval and are intended for the correction of errors in software
where the changes will not affect software function.  This is not considered appropriate for
SRS and hence the more rigorous form of Engineering Changes, namely Modification, is
required. Alternative standards or procedures to Def Stan 05-57 may be used, as long as they
conform to the requirements of Def Stan 05-57 and are agreed between the Software Design
Authority, the Design Authority and the MOD PM.

25.3 Configuration control is particularly important when SRS is being developed and the
scope of the control will need to be greater than for other development projects.  In particular
it will be necessary to provide configuration control of the formal specification and all
assurance activities (for example proof, static analysis, dynamic testing) associated with each
configuration item.  Whilst control of copies of the SRS following delivery is outside the
scope of the Software Design Authority's configuration management system, it is important
for the Software Design Authority to keep comprehensive records of the copies of the SRS
that are delivered.
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25.4 No guidance.

25.5 This will necessitate keeping records of the versions of the hardware, operating
systems and software used to produce a particular version of the SRS and ensuring access to
such hardware, software and operating systems if the need arises.  It may be costly to recreate
the SRS and its development environment from scratch, but on the other hand it may be
costly to maintain the SRS and development environment at a level of readiness where
reversion to previous versions is easy.  The Software Design Authority should therefore
balance the costs of maintaining easy reversion to a historical state against the likelihood of
being required so to do.

25.6 It may be impracticable to use the same configuration management tool for the control
of all items.  Ideally, however, all configuration items should be included within the
automated configuration system.

25.7 Configuration items are to be subject to configuration control as soon as they are
given an identity and before they are referred to or used.  It is not acceptable for configuration
control to be applied retrospectively.

25.8 The rigour of the configuration control of each software item should be commensurate
with the criticality of each item.  The identification of the safety integrity level of each
software item should also help prevent software items of insufficient integrity being included
in an application.

25.9 The main safety risk to systems containing SRS is likely to be from accidental events.
However, it is possible that there may be a risk from deliberate acts. Precautions, for example
vetting of staff and restricted access to the software and data, should be taken commensurate
with the level of risk.

25.10 No guidance.

25.11 The Software Configuration Management Plan may be part of the Configuration
Management Plan for the system of which the software is part. The content of the Software
Configuration Management Plan should be as detailed in annex B.10.

25.12 The content of the Software Configuration Record should be as detailed in annex
B.11.

26 Selection of Methods

26.1 Formal methods will be the primary means used for the specification and design
processes of the SRS, but other methods (for example structured design methods) should be
used as appropriate to complement the particular formal method chosen.  In practical terms
the use of formal methods is likely to involve certain gaps which cannot be bridged by formal
arguments.  It is possible to use formal methods at various points and in various ways during
the SRS development process but, for non-trivial developments, it is not likely to be possible
to produce a consistently rigorous and continuous formal development route from
requirements to code.  Gaps that cannot be bridged by formal arguments are most likely to
arise where there is a major structural discontinuity in the SRS, for example where a
subsystem is decomposed into a number of separate modules.  In such areas structured design
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26.1 (Cont)

methods should be used to complement the formal methods and to provide the confidence in
the transformation link.

26.2 Required methods

26.2.1 Formal methods

26.2.1.1 Formal methods are mathematically based techniques for describing system and
software properties. They provide a framework within which developers can specify, develop
and verify software in a systematic manner.

26.2.1.2 In order to be suitable for safety related applications, a formal method should be
supported by industrialized tools and should contain a formal notation for expressing
specifications and designs in a mathematically precise manner.  (An `industrialized tool' is a
software tool intended for use on a commercial software development and with a level of
robustness that is no worse than that of a typical commercially available software tools.  An
industrialized tool would also possess commercial-quality user documentation, be usable by
competent, appropriately trained, software engineers and the user would have access to
effective support from the supplier.  This could be contrasted with an `academic tool' which
may only be suitable for use on small examples of code, may be unreliable and unsupported
mad may only be usable by specialists.)  This notation should have a formally defined syntax,
should have semantics defined in terms of mathematical concepts and should be appropriate
to the application.

26.2.1.3 Other desirable features of a formal method include:

a) a means of relating formal designs expressed in its formal notation, preferably in terms of
an associated proof theory for the verification of design steps;

b) guidance on good strategies for building a verifiable design;

c) documented case studies demonstrating its successful industrial use;

d) its suitability for design as well as specification, either on its own or in combination with
another formal method;

e) the availability of courses and textbooks;

f) a recognized standard version which should preferably be an international or national
standard or, failing that, a published draft standard.

26.2.2 Structured design methods.

26.2.2.1 Structured design methods comprise a disciplined approach that facilitates the
partitioning of a software design into a number of manageable stages through decomposition
of data and function.  They are usually tool supported.
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26.2.2.2 A range of structured design methods exist covering a range of application areas,
for example real-time, process control, data-processing and transaction processing.  Many are
graphical in format, providing useful visibility of the structure of a specification or design,
and hence facilitating visual checking. Graphical representations include data-flow diagrams,
state transition diagrams and entity-relationship diagrams.

26.2.2.3 Many structured design methods possess their own supporting notation that in
some cases may make use of mathematical notations thereby providing scope for automatic
processing.

26.2.3 In the context of this Standard, structured design methods are considered to include
object orientated methods.

26.2.4 Static analysis.

26.2.4.1 Static analysis is the process of evaluating software without executing the
software.  For the purposes of this Standard, static analysis is considered to comprise a range
of analyses which includes all of the following:

a) Subset analysis:  identification of whether the source code complies with a defined
language subset. Where the subset is not statically determinable this analysis will necessitate
modelling the dynamic aspects of the software (eg through semantic analysis - see below) in
order to check that the dynamic constraints of the subset are also met.

b) Metrics analysis:  evaluation of defined code metrics, for example relating to the
complexity of the code, often against a defined limit.

c) Control flow analysis:  analysis of the structure of the code to reveal any unstructured
constructs, in particular multiple entries into loops, black holes (sections of code from which
there is no exit) or unreachable code.

d) Data use analysis:  analysis of the sequence in which variables are read from and written
to, in order to detect any anomalous usage.

e) Information flow analysis:  identification of the dependencies between component inputs
and outputs, in order to check that these are as defined and that there are no unexpected
dependencies.

f) Semantic analysis/path function analysis (or symbolic execution):  conversion of the
sequential logic of the code into a parallel form to define the (mathematical) relationship
between inputs and outputs. This can then be manually checked against the expected
relationship, as defined in the detailed design, for each logical path through the component, in
order to verify that the semantic logic of the code is correct.  Semantic analysis can also be
used to carry out checks against language limits, for example array index bounds or overflow.

g) Safety properties analysis:  analysis of worst case conditions for any non-functional safety
properties, including timing, accuracy and capacity.



DEF STAN 00-55 (PART 2)/2

27

26.2.4.2 Static analysis is usually performed, using software tools, on source code to verify
each software component against the lowest levels of the design.  It may require annotation of
the source code, typically in the form of tool-interpreted source language comments. Static
analysis may also be performed:

a) on the design, to assist in the verification of one level of design against the preceding one,
where the design is represented in an appropriate format;

b) to verify that object code is a correct refinement of source code, by statically analysing
decompiled object code and demonstrating that this possesses identical semantics to the
source code.

26.2.4.3 Some static analysis tools are also able to verify or prove code against low level
mathematical specifications or verification conditions.  From the point of view of this
Standard, these activities are considered to come under the category of formal arguments,
although they are likely to represent only a part of the formal arguments necessary to show the
conformance of object code to the Software Requirement.

26.2.5 Dynamic testing

26.2.5.1 Dynamic testing is the evaluation of software through the execution of the
software.  In the context of this Standard it comprises a `formal' part of the verification
process, to be conducted only when there is a high degree of confidence that the software will
successfully pass the tests.  It is to be differentiated from debugging which is the process of
executing the software to locate, analyse and correct suspected faults.

26.2.5.2 Dynamic testing should be conducted at unit, integration and system levels to
verify the code against the detailed design, architectural design and specification.  It is
typically supported by test tools to assist in the automation of the testing and the measurement
of attainment of test targets, for example statement coverage.

27 Code of Design Practice

27.1 The Code of Design Practice may be derived from an existing company manual
containing the Software Design Authority's interpretation of the software development
practices required by the Standard.  Where sections of the Code of Design Practice are
unchanged from a previous document they should be reviewed to confirm suitability for the
current application and to ensure conformance with the requirements of this Standard.  A
newly developed Code of Design Practice will be reviewed in accordance with the
requirement in clause 22 of Part 1 of this Standard for all documents to be reviewed. The
Code of Design Practice should be updated as appropriate whenever refinements to the
development methods are made. The content of the Code of Design Practice should conform
to that defined in annex B.12.

27.2 No guidance.
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28 Selection of Language

28.1 High-level language requirements

28.1.1 Definitions of the language characteristic terms `strongly typed' and `block structured'
are provided in annex A of Part 1 of this Standard.

28.1.2 A formally-defined syntax is one that is represented in an appropriate formal or
mathematical language.  A suitable formal language for representing programming language
syntax is Backus-Naur Form (BNF).

28.1.3 Currently all `real' languages have features which are undefined, poorly defined or
implementation-defined.  Furthermore, most languages have constructs that are difficult or
impossible to analyse.  Until a `safe' language has been developed it is inevitable that a
language subset will be used for coding the SRS, in order to ensure that the program
execution will be both predictable and verifiable.

28.1.4 In order for program execution to be predictable, the semantics of the language need
to be well defined, either formally or informally.  Both static and dynamic checks are required
to ensure that the requirements of the language hold.  Static checks and enforcement of the
static language properties should be performed by the compiler used.  Checks of the dynamic
properties should be performed by analysis or other means.  The language checks should
include checks for conformance to any defined language subset and will typically be
performed during static analysis (see clause 26).

28.1.5 In order for program execution to be predictable, there should be a link
(facilitated by the formally defined syntax) between the formal design and the execution of
statements in the implementation language.  This link should be provided by semantics for the
language which form a basis for carrying out formal proofs about the code (the proof theory).
The compiler that is used should be shown to be consistent with these semantics.

28.1.6 The link between the formal design and the source code should be achieved by
selecting an implementation language such that:

a) it has generally accepted formal semantics and a proof theory in terms of the formal
method in use;

or

b) it has implicit formal semantics and a proof theory embodied in a proof obligation
generator.

28.1.7 In the absence of either of these options, the implementation language should be
linked by hand to the formal method in use and a justification should be provided for its
choice.

28.2 Justification should also be provided in the Software Safety Case that the
language checks performed by the compiler and by other means are adequate to ensure
predictable program execution.

28.3 Requirements covering coding practices are defined in clause 36.
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28.4 No guidance.

28.5 Use of assembler.

Experience shows that programming in assembler language is more error-prone than
programming in a high-level language.  There are circumstances, however, in which the
practicalities of real time operation are such that the use of assembler is necessary in order to
meet performance requirements.  Furthermore, the use of a high-level language introduces
some additional risks compared with the use of assembler. Specifically, high-level language
compilation  systems are more prone to error and less easy to verify than assemblers.  There is
therefore a need to trade off the risks of assembler programming against the risks of the use of
a high-level language compiler, linker and runtime system.  In general it is considered that
only for very small amounts of assembler do the safety benefits of not having a compilation
system outweigh the increased risk of programming error.  Programming rules for assembler
language programming should be more strict than those for high-level languages:  Specific
requirements are detailed in clause 36.

28.6 Compilation systems

28.6.1 Where the compilation system is classified as being of the highest safety assurance
level, there is a requirement, under selection of tools (see 29.5), that the compilation system
should be developed to the requirements of this Standard.  However, the development of such
a compiler is unlikely to be commercially viable and, in any case, the small user base of such
a product would be a negative factor in justifying its safety.

28.6.2 In practice the Software Design Authority should choose a combination of SRS
design, compiler assurance and object code verification that is shown from the safety analysis
of the SRS development process to maximize confidence in the correctness of the
compilation process (see 36.6 of Part 1 of this Standard).

28.6.3 Methods of providing assurance of the correctness of a compiler include:

a) Compiler validation:  An internationally agreed black box method of testing compilers,
designed to demonstrate that a compiler conforms to the appropriate international language
standard.  A validation certificate indicates that a compiler has successfully passed all the
tests in the appropriate validation suite.

b) Evaluation and testing:  The conduct of evaluation and testing beyond that provided by
validation.  Such evaluation and testing may examine the compiler in more depth than
validation and is also able to assess the compiler in the particular configuration in which it is
to be used on the SRS, which may not be the same configuration in which the compiler was
validated.

c) Previous use:  Evidence provided by successful previous use.  This can be used as an
argument for increasing the confidence in the correctness of the compiler.  The requirements
for configuration management, problem reporting and usage environments should be the same
as for previously developed software (detailed in 30.5 of Part 1 of this Standard).
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28.6.4 The use of many programming languages will involve the use of an existing run-time
system.  This should be considered as use of previously developed software which is
discussed in clause 30 of Part 1 of this Standard.

29 Selection of Tools

29.1 Tools are essential in an industrial scale project as they allow processes to be
performed which otherwise would be impracticable or inefficient and they allow the
developer to have a higher degree of confidence in the correctness of a process than might
otherwise be the case.  In addition to any tools that are needed for the specific methods to be
used, tools to support common functions such as configuration management, checking of
specification and design documents, static analysis, dynamic testing and subsequent
manipulation of object code are required for the efficient application of the Standard.  Safety
assurance, defined in annex A of Part 1 of this Standard, is a subjective measure of
confidence in safety; as opposed to safety integrity which is an objective and quantified level.

29.2 The safety assurance requirements for the tools used to support the various functions
of the SRS development process are dependent on the contribution of the tools to the
achievement of a safe product.  In the same way that SRS should be considered in a systems
context, the use of the tools should be considered in the context of the overall development
process.  The safety analysis of the SRS development process should therefore consider each
tool in the context of its use in the SRS development.

29.3 No guidance.

29.4 The safeguards may consist of the use of a combination of tools or manual checks.
Further guidance is provided in 29.5.

29.5 Tool selection criteria

29.5.1 Tools required to be of the highest level of safety assurance should be developed to
the requirements of this Standard.  It is anticipated that few tools, if any, are likely to be
developed to this requirement, and hence diverse checks will almost always be required to
reduce the safety assurance requirements for the tool to a manageable level.

29.5.2 Where the safety analysis and tool evaluation indicates that a single tool does not have
the required level of safety assurance, combinations of tools or additional safeguards, such as
diverse checks and reviews, should be used.  The independence and diversity of the methods
or tools and their effectiveness in achieving the required level of safety assurance should be
addressed in the safety analysis of the SRS development process and justified in the Software
Safety Case.

29.5.3 In situations where combinations of methods or tools are being used to achieve a
higher combined safety assurance, human intervention may be involved in the combining
function.  Because human conduct of repetitive or monitoring tasks is error-prone, such a
function should be as simple as possible and should be cross-checked.  Alternatively the
Software Design Authority may be able to achieve a higher level of safety assurance by the
development and use of a simple tool.
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29.5.4 For lower levels of safety assurance the Software Design Authority will need to justify
the adequacy of the development of each tool and evidence of correctness.  Such justification,
and arguments that the safety assurance of the tool is appropriate for the use of the tool in the
SRS development, should be contained in the Software Safety Case.

29.5.5 Where appropriate, validation and evaluation of tools should be carried out by an
approved third party using a recognized test suite, acceptance criteria and test procedures,
taking into account the operational experience with the tool.  Where these services are not
available, the Software Design Authority should undertake or commission an evaluation and
validation and provide arguments that the tools meet a required level of safety assurance.  The
installed base, defect history and rate of issue of new versions of the tool are also useful
factors, as is ISO 9001 and ISO 9000-3 conformance of the tool supplier.

29.5.6 The Software Design Authority has the overall responsibility for selecting tools and
should address the matching of tools to the experience of members of the Design Team as this
has an important effect on productivity and quality, and hence on safety assurance. It should
be appreciated that compromises are inevitable in assembling a coherent tool set from a
limited set of candidates.  As part of the determination of adequate safety assurance,
consideration should also be given to the interaction between the Design Team members and
the tool, and the level of safety assurance that can be given to this interface.

29.5.7 The needs of support and maintenance activities during the in-service phase should be
taken into account when selecting tools.  In order to minimize support requirements,
consideration should be given to the selection of a limited number of broad spectrum tools in
preference to the selection of a larger number of specialized tools.  Tools which are unlikely
to have continued support through the life of the equipment should not be employed in the
SRS development.

29.5.8 Should it prove impracticable to define a SRS development process that can be
supported by tools of the required levels of safety assurance, even after taking the above into
consideration, a course of action should be proposed by the Software Design Authority and
agreed by the Independent Safety Auditor and the MOD PM.  In general, tools should be used
as follows:

a) Whenever practicable a tool of the required level of safety assurance should be used.

b) Where it is not practicable to use a tool of the required level of safety assurance, a
combination of tools should be used to provide the necessary added safety assurance.

c) Where it is not practicable to use a combination of tools, the use of a tool should be
combined with an appropriate manual activity.

d) Only if there are no suitable tools available should a process be performed manually.
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30 Use of Previously Developed Software.

30.1 When proposing to make use of previously developed software the following points
should be considered:

a) The appropriate reuse of well proven software can be of substantial benefit to the integrity
of SRS.

b) The policy for the use of previously developed software should be detailed in the Software
Safety Plan which should also contain criteria for acceptability (eg appropriate in-service data
for the previously developed software).

30.2 Unreachable code.  Unreachable code should be documented in the Software Design
and justification for its retention should be provided in the Software Safety Case.

30.3 Where software has been developed to the requirements of this Standard it is
necessary to ensure that any differences between the original and new applications will not
reduce the safety integrity of the code.  Where differences exist, V&V activities should be
repeated to a degree necessary to provide assurance in safety.  For example, if a different
compiler or different set of compiler options are used, resulting in different object code, it
will be necessary to repeat all or part of the test and analysis activities that involve the object
code.

30.4 Previously developed software not developed to the requirements of this Standard

30.4.1 Ideally all software that was not originally developed to the requirements of this
Standard should be reverse engineered to a level equivalent to that of software that has been
developed in accordance with this Standard.  Reverse engineering in this context means the
conduct of retrospective activities that include formal specification, formal design, formal
arguments of verification, static analysis and dynamic testing.  Access to the source code,
design documentation and the software supplier is likely to be essential for this to be
practicable.  The primary aims of the reverse engineering are to provide an unambiguous and
complete definition of what the software does and to verify, to an appropriate level of
confidence, that the software meets this definition.  A secondary aim is to produce
documentation that will assist the incorporation of the previously developed software into the
SRS and which will facilitate future maintenance.  However, there may be cases where
retrospective application of this Standard in its entirety to previously developed software
would not be practicable.  In such cases a reduction of the amount of reverse engineering
activities may be possible if such a reduction can be justified from the safety analysis, taking
into account the in-service evidence (see 30.5).  An example may be a run-time system or
library where the software has been used without failure in diverse circumstances.

30.4.2 In deciding the extent of reverse engineering, an evaluation should be made of the
development process of the previously developed software, in particular its general adequacy
and conformance to the requirements of this Standard.  The reverse engineering activities
should concentrate on the areas most notably inadequate in satisfying the objectives of this
Standard.  Specific issues to be addressed should include:

a) Conformance of the development process of the previously developed software to ISO
9001 and ISO 9000-3.
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b) Appropriate configuration management processes that provide traceability from the
software product and lifecycle data of the previous application to the new application.

c) The methods and tools used during the development of the previously developed software.

d) The extent of the V&V activities conducted on the previously developed software.

e) The adequacy of the documentation for the previously developed software.

30.4.3 The problem report history of the previously developed software should be analysed to
identify the origin of the problems and thereby gain an indication of the adequacy of all or
parts of the development process.  The extent to which previously developed software that
has not been developed to the requirements of this Standard may be incorporated in the new
application should be agreed between the Software Design Authority, the Design Authority,
the Independent Safety Auditor and the MOD PM.

30.5 In-service history

30.5.1 In order for in-service history of the previously developed software to provide any
degree of objective evidence of integrity, there will need to have been effective configuration
management of the previously developed software and a demonstrably effective problem
reporting system.  In particular, both the software and the associated service history evidence
should have been under configuration management throughout the software's service life.

30.5.2 Configuration changes during the software's service life should be identified and
assessed in order to determine the stability and maturity of the software and to determine the
applicability of the entire service history data to the particular version to be incorporated in
the SRS.

30.5.3 The problem reporting system for the previously developed software should be such
that there is confidence that the problems reported incorporate all software faults encountered
by users, and that appropriate data is recorded from each problem report to enable judgements
to be made about the severity and implications of the problems.

30.5.4 The operating environments of the previously developed software should be assessed
to determine their relevance to the proposed use in the new application.

30.5.5 Quantified error rates and failure probabilities should be derived for the previously
developed software, taking into account:

a) length of service period;

b) he operational in-service hours within the service period, allowing for different operational
modes and the numbers of copies in service;

c) definition of what is counted as a fault/error/failure.
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30.5.6 The suitability of the quantified methods, assumptions, rationale and factors relating
to the applicability of the data should be justified in the Software Safety Case.  The
justification should include a comparison of actual error rates with the acceptability criteria
defined in the Software Safety Plan and justification for the appropriateness of the data to the
new application.

30.6 No guidance.

30.7 No guidance.

30.8 No guidance.

30.9 In cases where the previously developed software is justified on the basis of in-service
history or extensive V&V and is treated as a `black box', it may be acceptable for design
information not to be provided as long as a comprehensive requirements specification for the
software is provided.

31 Use of Diverse Software

31.1 Software diversity is one of a number of techniques that may be used for design fault
tolerance (see also 34.4).  The decision to use diverse software should be made as part of a
coherent approach to fault tolerance, starting with system diversity covered in Def Stan 00-56,
and following an objective analysis of the potential safety benefits and weaknesses of
software diversity, including consideration of the following:

a) The aim of software diversity is to produce two or more versions of a software program in
a sufficiently diverse a manner as to minimize the probability of the same error existing in
more than one version. Consequently, when the diverse versions are operated in parallel, any
design or implementation errors in any of the diverse versions should not result in common
mode failure.  Other names for software diversity are multiple-version dissimilar software,
multi-version software, dissimilar software or N-version programming.  Software diversity
may be introduced at a number of stages of development, specifically:

i) design:  typically through the development of each diverse version of the software by
separate development teams whose interactions are managed; the development being
conducted on two or more software development environments;

ii) coding:  the implementation of the source code in two or more different implementation
languages;

iii)compilation:  the generation of object code using two or more different compilers;

iv)linking and loading:  the linking and loading of the object code using two or more different
linkage editors and two or more different loaders.

b) Diversity may be introduced at all of the above stages or in a more limited manner if there
are specific development risks that are required to be addressed.
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c) Software lifecycle processes completed or activated before dissimilarity is introduced into
a development remain potential error sources.  This is particularly the case where each diverse
implementation is derived from the same Software Requirement.  Since experience indicates
that the specification process is the largest single source of software faults, it is important that
the requirements of this Standard are met in all aspects relating to the software specification.

31.2 Some reduction in the rigour of the V&V processes on diverse components is possible
if it can be demonstrated that the improved safety integrity from diversity outweighs the
potential hazards of reducing the rigour of the SRS development process.  The use of diverse
software components with reduced V&V processes should be shown by the safety analysis of
the SRS development process to have an equivalent or higher safety integrity level than a
single development with full V&V activities.  For example, by using diverse implementation
languages and compilers the safety analysis may show that the risk of compiler errors causing
hazards is reduced by such a degree that the amount of object code checking may safely be
reduced.

31.3 It should be noted that the use of diverse software can introduce problems, for example
in the areas of synchronization and comparison accuracies between diverse components
operating in parallel, which may increase the safety risk.  It is also often difficult to judge the
independence of the diverse components and hence to guarantee their freedom from common
mode failures, particularly where common solutions to difficult areas of the problem domain
may have been adopted.  This makes the benefits of software diversity hard to quantify.  Such
issues should be addressed during the safety analysis and taken into account in the
justification for both the use of software diversity and any reduction in the rigour of V&V
activities.
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Section Five.   SRS Development Process

This Section provides a set of techniques to be used in the development of SRS and describes
what shall be done to claim conformance to each technique.  The application of these
techniques across various safety integrity levels is given in the Tailoring Guide shown in
annex D.

32 Development Principles

32.1 The lifecycle for the SRS development

32.1.1 The lifecycle for the SRS development which is reflected in the structure of this
Standard is illustrated in figure 3 and consists of the following development processes.

a) production of a Software Specification (see clause 34);

b) development of a series of increasingly detailed Software Designs (see clause 35);

c) coding the SRS (see clause 36);

d) testing and integrating the SRS (see clause 37).

32.1.2 Decompositions of the lifecycle for the SRS development in terms of alternative
development processes may be acceptable, provided that they can be related to those specified
in this Standard.  For example, coding and compilation might be considered as two
development processes.

32.1.3 The SRS development process should be defined in terms of its constituent
development processes, each of which should have defined objectives, inputs and outputs.
Each development process should be broken down in a similar way to arrive at a set of basic
tasks which are sufficiently simple to be well understood in terms of the information content
of their inputs and outputs and the definition of how the task is to be performed.

32.1.4 Diagrammatic representations should be used in documenting the SRS development
process as these are often helpful in communicating an overview of the development and
verification processes and their relationships.  Such diagrams can also be helpful when
performing a safety analysis of the SRS development process in accordance with 7.4 of Part 1
of this Standard.

32.1.5 It is assumed in this Standard that the development processes are phased sequentially,
such that each is completed before the following one is started.  However, it is acceptable for
other phasing to be adopted provided that such phasing is well defined.  One satisfactory way
of doing this is to specify the entry and exit criteria for each development process.  A
sequential set of development processes is then one in which no development process can
commence until the preceding development process has completed and partial overlap can be
obtained by permitting a development process to start when a specified subset of the products
of a previous development process are available.  In order to provide a satisfactory level of
control and to avoid extensive rework, the exit criteria for each development process should
require the completion of all preceding development processes.  In any case the verification of
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the outputs of a development process cannot meaningfully be carried out before the
verification of its inputs.

SoftwareDesign

Software Specification English
Commentary

structured analysis formal specification

English commentary

structured design formal design

Software
Requirement

source code

object code

executable
prototype(s)

design
prototype(s)

Key
Verification
First cut
Full detail

Figure 3:  Lifecycle for SRS Development (1)

32.1.6 The philosophy adopted by this Standard is that correctness should be achieved during
development and emphasis should therefore be placed on avoiding the introduction of errors
rather than on their subsequent elimination.  The inputs and outputs of each development
process should be checked both for internal consistency and for consistency with one another.
Tests should also be devised at each stage so that it can be verified that the software performs
as required.  It follows that the context of each development process is as illustrated in figure
4.
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32.1.7 A top-level view of the lifecycle for the SRS development envisaged in this Standard
is shown in figure 5.  This figure should be viewed as illustrative of the overall approach and
does not include detail, such as feed-back, which will occur (and is to be encouraged) in any
real project.  It should be stressed that the particular lifecycle that is adopted is not important
provided that the following objectives are supported:

a) It should be possible to relate the development processes and tasks to the requirements of
this Standard.

b) A progressive refinement from requirements to product should be visible.

c) There should be traceability of requirements through the documented outputs of the
software development lifecycle.

d) There should be verification of the outputs of each development process.

32.1.8 The role of each development process and task in meeting the requirements of this
Standard should be clearly understood so that the contribution that each task makes to the
overall development is documented and conformance with this Standard can be demonstrated.
It is particularly important that this information is available if changes to the development
process have to be made at a later stage.

32.2 Production of the Software Specification, Software Design and code

32.2.1 This Standard requires that the documentation for the software provides a series of
views of its functionality and performance, from an initial high-level, abstract form (what is
required) to a detailed implementable form (how this is achieved).  When formal methods are
used throughout, this takes the form of a formal specification which is related to a formal
design and thence to the code via a series of refinement proofs. The documentation should
assist the reader to see the high-level overview as well as the detail from both the Software
Specification and Software Design (which may consist of more than one stage).  The final
stage of the design is the production of the source code from which is generated the object
code that is implementable on the target hardware.

32.2.2 The view taken in this Standard is that the clearest, most concise and least ambiguous
specification and design will be achieved through the use of formal methods. To make the use
of formal methods practical, the following points should be noted:

a) To assist in the development and assessment of the Software Safety Case, the Software
Design Authority should ensure that all aspects relevant to safety can be readily identified.

b) Structured design methods can help in producing well structured and hence maintainable,
understandable software.  The view taken in this Standard is that formal methods and
structured design methods are complementary and may be used in conjunction to produce a
better product.   Conventional (informal) methods should be used to structure and analyse the
functionality.  Informal methods are generally designed to be easy to use, are accessible and
have good tool support.  Formal methods are used to remove ambiguity and to enable
mathematical reasoning to take place.  If timing is critical to safety, then formal expression of
the timing requirements will be necessary.  For simple requirements, this can sometimes be
achieved by representing time as a variable within the formal representation.
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32.2.2 (Cont)

c) Formal methods should normally be used to represent the entire functional requirements of
the SRS.  However, there may be cases, agreed in advance between the Software Design
Authority, the Independent Safety Auditor and the MOD PM, where the use of formal
methods for the entire SRS would not contribute materially to the safety of the system.  In
these cases, the minimum requirement is that the safety functions and safety properties are
represented formally.

d) If the formal specification does not represent all requirements, then it will rely to some
extent on informal techniques.  The Software Design Authority should ensure that the formal
representation is sufficient to represent the safety features and that the informal parts which
may be required to link it together do not introduce ambiguity.  Reducing the scope of formal
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methods in the specification and design may result in an increase in the requirements for
testing.  In addition, regardless of the scope of the formal specification and design, the entire
SRS code should be subject to static analysis to ensure that an error in the non-formally
specified parts cannot introduce errors affecting the formally specified parts.  Where the
software relies on input of a particular form, such as configuration data, look-up tables etc,
the characteristics and properties of this data should be formally specified and designed. This
might include specifying type, range, accuracy, permissible values, relationships between two
or more data items, permissible operations etc.  It may not be possible to generate proofs of
the safety properties without such specification,.

e) Even when all functional parts are formally specified, there will almost certainly be
requirements for which formal methods are not well suited (such as maintainability, user-
interface, reliability etc).  These should be addressed by conventional methods.  The Software
Design Authority should ensure that using more than one notation does not lead to ambiguity,
to conflict between two or more notations or to parts of the specification not being fully
covered by any method.  The interface between the methods should be documented in the
Code of Design Practice, but if there are any specific areas where confusion might arise, an
analysis of the interface should be provided in the Specification Record or Design Record.

f) The usefulness of the formal notation is considerably enhanced by an English commentary,
which should help to provide the link between the mathematical notation and the physical
conditions and objects that they represent.  English commentary should be in the terms used
by the system designers and should avoid mathematical `jargon'.

g) Tools should be used to assist in the preparation of the formal representations.

32.2.3 The Specification Record, Design Record and Test Record should contain or reference
all the quality assurance and verification records which are accumulated during the
development and verification of the Software Specification, Software Design and code.  The
Software Design Authority may choose to have different document structures, but the link
between the records and the processes within the SRS development process should be clear.

32.2.4 The Specification Record relates to the specification of requirements, including the
review of the Software Requirement and preliminary validation of the Software Specification.
The Design Record relates to their implementation in the Software Design and code,
including the static analysis and formal proof.  The Test Record contains testing documents
(including test specifications and results).  Object code verification should normally be
recorded in the Design Record, but object code verification performed by testing may be
recorded in the Test Record.

32.2.5 Many of the clauses in this Standard, are intended to improve the maintainability of
the SRS, as well as the probability of developing it correctly in the first place.  The SRS
development is likely to be required to conform to the requirements of an integrated logistics
support standard such as Def Stan 00-60.  The Design Team should consider the lifetime over
which the SRS will be required to be supported and, as this is likely to be of long duration,
should ensure that the whole of the documentation is understandable to people outside the
original team.  Recording of assumptions and reasoning behind design decisions will help to
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ensure that future modifications can be made correctly. Consideration of maintainability also
affects the choice of methods, languages and tools.

32.2.6 Prototypes may usefully be used at several points in the development, for example to
clarify requirements or to check feasibility of a design solution, but it is not acceptable for
prototype code to become part of the SRS by the retrospective application of quality
procedures.  Once the prototype has been used to clarify the requirements or check the
feasibility of the design, the code should be developed according to the development
principles.  Designers and coders are free to use such prototypes as a model for the
implementation, but the design should not be reverse engineered from prototype code.  Note
that, except where it could not affect safety, prototype code does not satisfy the requirements
for reuse of previously developed software (see clause 30).

32.2.7 To protect against inadvertent confusion between similar parts of prototype and
formally developed code, the configuration management system should make a clear
distinction between these categories (for example by using a different prefix in the naming
convention), and this distinction should be made in the individual code items (for example in
the module names used and in module headers).

32.3 Traceability

32.3.1 Traceability is required to assist in demonstrating that all requirements are satisfied
and that the SRS does not perform in any way that is not specified.  Traceability is also
important in showing that the V&V is adequate.  Traceability is important when changes are
made to requirements, design or code, because the traceability helps to locate where the
changes should be made and what tests should be repeated.

32.3.2 It should be possible to trace each requirement through the Software Design to the part
of the code which implements it, and it should be possible to trace from any part of the code,
back through the Software Design and Software Specification, to the requirement in the
Software Requirement which is satisfied.  To a certain extent, the particular software
development methods used will determine what is actually identified in the traceability
system.  It is likely however, that the functions, data and constraints will be recognizable in
some form in the Software Requirement, and that therefore these should be identifiable in the
Software Design and code even if they are packaged in some other manner.

32.3.3 Traceability is also required for all forms of verification.  This enables checking of the
extent of the verification, and also helps to ensure that the extent of reverification in the event
of changes can easily be assessed.  Individual tests, or sets of tests, should be given
traceability to the requirements and designs which are being tested.  The philosophy behind
each test should also be stated, including whether the test has been designed using white box
or black box techniques and also the particular test technique or criteria which has been used.
For example, one test might be a black box test designed to cover a particular equivalence
partition; another, a white box technique added to achieve a particular coverage metric.
Formal arguments should also be given traceability to the requirements and proof obligations
which are being discharged.
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32.3.4 Traceability is normally achieved through the use of traceability matrices, or through
the use of a traceability tool.

32.3.5 However complete the Software Requirement, there will be times when the choice of
implementation leads to additional derived requirements.  For example, the division of the
software system into smaller subsystems would result in interface requirements; the choice of
a particular microprocessor and memory unit will result in specific timing and capacity
requirements; the decision to write defensive code may result in the source code having a
need to report particular failures via failure codes.  The Software Design Authority should
ensure that the eventual users and maintainers of the SRS have visibility of relevant
requirements.  This would normally be achieved by the Software Design Authority reporting
such requirements to the Design Authority, who will have the responsibility of creating the
user and system maintenance documentation.

32.4 Verification of the Software Specification, Software Design and code

32.4.1 The formal specification and formal design are mathematical objects constructed
according to certain formal rules.  Because of this, it is possible to carry out checks on them,
in addition to simple manual review, and because of their mechanical nature many of these
checks can be automated.  Automated checks have the advantage of being repeatable and
consistent.  Syntactic checks are those which detect incorrect use of the notation.  Semantic
checking detects the presence of errors, such as type errors in syntactically correct
specifications and designs.  These checks resemble, but are generally more extensive than the
checks provided by a good compiler for a high-level language.

32.4.2 Where structured design methods have been used in the preparation of the Software
Specification and Software Design, tool-supported syntax and consistency checks should be
performed on these parts of the documents.  Other parts of the documents, such as the English
commentary can only be reviewed.

32.4.3 The proof obligations for a particular formal method are the properties that the
designer is obliged to discharge in order to have assurance that the specification is self
consistent, or that a design correctly implements a specification (refinement).  The proof
obligations for self consistency and sometimes for refinement may be obtained from the
published definition of the formal method.  The goal of detecting inconsistencies in the
specification is usually achieved by some form of satisfiability proof, ie proving that for all
valid inputs, the output satisfies the requirements. Refinement proofs are required to verify
the first stage of the design against the specification and to verify each subsequent design
stage against the previous one. Manual generation of proof obligations is an extremely
arduous and error prone task and a more assured method is to use a proof obligation
generator.  This is a tool which embodies the proof theory for the method.

32.4.4 Proof obligations are discharged using formal arguments.  Formal arguments can be
constructed in two ways: by formal proof or by rigorous argument.

32.4.5 A formal proof is strictly a well formed sequence of logical formulae such that each
formula can be deduced from formulae appearing earlier in the sequence or is one of the
fundamental building blocks (axioms) of the proof theory.  Formal proofs are often highly
intricate and very long, and may be difficult to read or write without tools.  Tools should be
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used to assist in the generation of formal proofs and checking of formal proofs.  Where tools
have been used in the production of formal proofs, the proof output should be in a form
suitable for use as input to other tools (eg proof checkers).

32.4.6 A rigorous argument indicates the general form of a formal proof, by describing the
main steps.  It can be converted to a formal proof by the addition of detail and this process
should not require creative steps. Since rigorous arguments provide a lower level of assurance
than formal proofs, but are easier to produce, the decision should be made at the start of the
project about the circumstances in which rigorous argument will be acceptable.  This should
be agreed with the Design Authority, the Independent Safety Auditor and the MOD PM.
Agreement to any deviations, and to the detail of compliance with this policy, should be
obtained as the formal arguments are created.  Rigorous arguments should be stored in
machine readable form and should be made available in this form for update, review and
verification, in case it is thought necessary to add detail to convert a rigorous argument to a
formal proof.

32.4.7 Traceability should be provided between the formal arguments and the Software
Requirement to assist reviewers of the formal arguments to check that all requirements have
been verified, and to ensure that the implications of changes to requirements can be assessed.

32.5 Review

32.5.1 Review of formal verification

32.5.1.1 In some organizations the Design Team will have the responsibility of  generating
and discharging the proof obligations, as part of the specification and design process.  In other
organizations, the V&V Team will have the responsibility for the construction and discharge
of the proof obligations.  However the work is allocated, the V&V Team either produces and
discharges the proof obligations or reviews them.  This ensures that there is an independent
scrutiny of the Software Specification and the Software Design.  In addition there should be at
least a peer review of the proof obligations and formal arguments, so if these are produced by
the V&V Team, members of the V&V Team other than the author should review them.  The
Code of Design Practice should record whether reviews should be exhaustive or use spot-
checks.  Some projects will require a mixture, with key proofs being exhaustively checked
and others being subject to spot-checks only.

32.5.1.2 Reviewers of formal proofs should use a tool. The tool used to check a formal
proof should be different from the one used during its generation.

32.5.1.3 Theorem prover tools are generally large and complicated and it is therefore
difficult to ensure that they are free of errors.  In contrast, theorem checkers can be much
simpler.  By using a different, and simpler, tool to check the proof the chance of an error
being introduced by one tool and overlooked by the checking tool can be made very small.

32.5.1.4 Rigorous arguments can only be manually checked.  If there is any doubt about
the rigorous arguments, attempts should be made to turn them into formal proofs.
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32.5.2 Review of Software Specification, Software Design and code

32.5.2.1 This Standard requires that every output of the development process is reviewed.
The timing of the reviews should be chosen to facilitate progress and minimize rework.  It
will probably be more effective to review the Software Specification and the results of
automatic type and syntax checks before undertaking other verification processes.  Similarly
the Software Design should be reviewed before refinement proofs are performed, and the
code should be reviewed before static analysis is performed.

32.5.2.2 It is envisaged that the bulk of the reviewing will be done by other members of
the Design Team.  The V&V Team should be satisfied with the amount and the rigour of the
review and should be satisfied that there is sufficient independence to detect errors and to
assess the maintainability of the documents.  A suitable compromise may be to include a
member of the V&V Team in reviews of the completed outputs.

32.5.2.3 The Software Design Authority should follow their own procedures in how
reviews are organized, but the procedures in the Code of Design Practice should state:

a) the preparation time for the review;

b) requirements for the appropriate division of review material to ensure that the amount
covered at each review is manageable;

c) procedures to ensure full coverage for all aspects of the development;

d) the roles and qualifications required of members of the review team;

e) the procedures for recording and resolving any problems found.

32.5.2.4 The review should not attempt to perform the verification which is required in
other clauses, but it should consider the results of verification.

32.5.2.5 The review should also consider the adequacy of the verification, particularly with
respect to the need to ensure that the software meets the safety requirements.

32.5.3 Review of anomaly correction.  Whenever an anomaly is discovered by any
verification process, the Software Design Authority should first determine whether it
constitutes an error in the SRS or is simply an artefact of the design or verification method.  If
it is an error, the Software Design Authority should attempt to determine how the error
occurred, why it was not found sooner and whether there are likely to be other errors of the
same type.  If it is not an error, then an explanation and justification of the anomaly should be
recorded in the Specification Record, Design Record or Test Record.  Unnecessary changes
should not be made to the SRS, so an evaluation of the effects of changing the SRS or of
leaving it as it is should be made.  The evaluation should address whether an uncorrected
anomaly could lead to errors in the future.  If the anomaly is an error, but it is decided that a
correction will not be implemented, the details of the error, and justification for not correcting
it shall be included in the Specification Record, Design Record or Test Record.  This should
also be referenced in the Software Safety Case. Once an error has been fixed, it is usually not
sufficient simply to repeat the verification, as it is likely that the correction of the error will
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have been made in a manner that ensures that it passes the verification that detected the error.
The verification should therefore be reviewed, and additional verification performed.  If the
error has escaped detection by earlier verification processes, it may be necessary to repeat
earlier verification steps more rigorously, and to review and improve the Code of Design
Practice.  All investigations into errors should be recorded in the Specification Record,
Design Record or Test Record as appropriate.

33 Software Requirement

33.1 General

33.1.1 The purpose of the Software Requirement is to define a set of requirements which, if
met, will ensure that the SRS performs safely and according to operational need.  The
Software Requirement is typically a natural language document which includes engineering
notations such as diagrams and mathematical formulae.  The Software Requirement should be
derived from the requirements of the overall system, including safety, functional and non-
functional requirements.  Derived requirements may also arise during decomposition of the
system into subsystems.

33.1.2 The Software Requirement may form the technical part of a procurement
specification.  The whole of the subsequent SRS development process depends on the
requirements being correct and well understood and therefore it is worthwhile to invest some
effort in the requirements verification to ensure that the Software Design Authority is
satisfied that the requirements are suitable for subsequent development.  The review should
consider whether the Software Requirement fully addresses the following:

a) software safety integrity requirements;

b) safety functions;

c) configuration or architecture of the overall system as far as this affects the SRS;

d) capacity and response time performance;

e) all interfaces between the SRS and other equipment or operators;

f) all modes of operation of the system in which the SRS is required to operate, in particular
safety-related, maintenance, system testing and failure modes;

g) measures to overcome failure modes of the system,

hardware or software, (ie fault detection and fault tolerant mechanisms) which are to be
implemented in software;

h) any safety related or other relevant constraints between the hardware and the software;

i) requirements for software self-monitoring, and requirements for the software to monitor
actuators and sensors;
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j) requirements for periodic on-line and off-line testing of the system;

k) areas of functionality which are likely to change;

l) background information to enable the Software Safety Case to summarize the equipment
level design approach to safety and describe the role of the software in ensuring safety.

33.1.3 The Software Design Authority should also consider whether the Software
Requirement:

a) is clear, precise, unequivocal, testable and feasible;

b) uses terms which are unambiguous and will be understood by all users of the document;

c) distinguishes safety functions from non-safety functions;

d) distinguishes between requirements for the product and those for the development process;

e) is quantitative with tolerances;

f) avoids constraining the design of the SRS unnecessarily.

33.1.4 The input of the Software Design Authority can provide valuable insights, but is
necessarily limited by the scope of the requirements and visibility of the context of the
software in the system.  The Design Authority and the Software Design Authority should be
in agreement over the content and interpretation of the Software Requirement.

33.2 A contractual boundary may exist with the Software Design Authority being provided
with the Software Requirement.  Since safety is a system property, only the Design Authority
has the necessary information to decide the safety integrity level required of the SRS.
However, the Software Design Authority may have previous experience in similar software
systems, and should be satisfied that the safety integrity level demanded is both achievable
and reasonable for the system.

33.3 No guidance.

34 Specification Process

34.1 The role of the Software Specification is to provide a clear, concise, unambiguous
specification of the software.  This Standard requires the production of a Software
Specification, consisting of a formal representation of the safety functions and constraints of
the SRS, with other functions and constraints represented either formally or informally (see
figure 3).  The Software Specification should be structured using conventional structured
design methods and should be supported by an English commentary.  In addition, the
development of the Software Specification should be supported by a Specification Record,
which contains all the records pertaining to the development and checking of the Software
Specification.
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34.2 Verification of the Software Specification

34.2.1 The general method of constructing proof obligations and discharging them using
formal arguments should be used to verify the Software Specification. Since the Software
Requirement is informal, the proof obligations will be those required for internal consistency
of the Software Specification.  These should include proof that constraints demanded by the
Software Requirement are satisfied by the Software Specification.

34.2.2 All safety functions and all safety properties should be formally specified.  Particular
care should be taken to ensure that, for example, all timing and capacity constraints have been
identified, and that constraints and relationships between data items are recorded.

34.2.3 All checks, reviews etc should be documented in the Specification Record, which
should also contain any completed checklists or other `working' documentation which
indicates that the checks were performed.

34.3 Preliminary validation

34.3.1 This Standard allows for two methods of validating the Software Specification.

34.3.2 Formal parts should be validated formally, ie by performing proofs that certain
properties of the Software Specification hold.

34.3.3 Non-formal parts and non-functional parts (including dynamic properties) are difficult
to validate in this way, and will be more amenable to validation by means of one or more
executable prototypes or by means of animation tools.  Executable prototypes will also be
useful to assist users who are not trained in formal methods to understand a formal
specification.  If the SRS interacts directly with users, prototyping the user interface is very
important.

34.3.4 The review of the Code of Design Practice within the software safety review provides
the opportunity to decide if the proposed approach to preliminary validation is adequate.

34.3.5 The preliminary validation should provide the opportunity to check that the specified
system really will satisfy the operational requirements of the system and especially of the
users.  The end users of the system (or an informed representative), as well as specifiers of
other systems which interface to the SRS should therefore be involved.  The Design Authority
will generally need to be involved in preliminary validation.

34.3.6 Most projects have changes to the requirements during or after development.  The
Software Design Authority should define how such changes will be handled, and how much
of the preliminary validation will be repeated if the requirements (or the interpretation in the
Software Specification) change.  In some cases, the requirements will evolve during the
project, and it may be necessary to separate core functionality which can be formally specified
and verified from the start, from evolutionary functionality which is prototyped until the
requirements have stabilised.  In some projects, such as those developing control systems, it
may be necessary for the executable prototype to consist of code for the target system which
is used by the system designers to help to define the software requirements.



DEF STAN 00-55 (PART 2)/2

49

34.4 Preliminary validation via formal arguments

34.4.1 Formal arguments should be used to explore and assess the completeness and
consistency of an implementation deriving from the Software Specification, and in particular
to identify:

a) incomplete functions;

b) poorly defined functionality (for example specifications that do not cover all expected
cases);

c) errors in the Software Specification that lead to inconsistent states, failure conditions or
erroneous results.

34.4.2 Formal arguments should also be used to:

a) demonstrate that undesirable action does not occur;

b) establish the behaviour at the boundaries of the Software Specification;

c) explore and assess extensions and improvements that can be obtained without extensive
modification by building on what is already specified.

34.5 Preliminary validation via executable prototype

34.5.1 Executable prototypes can be developed by a variety of means, such as:

a) translation into a suitable executable language;

b) animation of the Software Specification by means of a tool designed for that purpose;

c) use of an executable subset of the specification method.

34.5.2 The Software Design Authority should try to ensure that the changes made in
converting from the Software Specification to the executable prototypes are kept to a
minimum and are mathematically justifiable in that they preserve the properties of the
Software Specification.  The Software Design Authority is required to construct and
discharge proof obligations which demonstrate the link between the Software Specification
and the executable prototypes.  In the cases where a tool has been used to perform the
translation or animation, the tool vendor should be able to provide assistance in explaining
and justifying the transformations used.  To minimize the effort involved, the Software
Design Authority should try to make the arguments as general as possible.  Rigorous
argument, rather than formal proof should normally be sufficient for discharge of the proof
obligations.

34.5.3 If an executable prototype covers elements of functionality that are not included in the
formal specification then there should be an explanation of how the non-formal parts of the
Software Specification have been mapped into the executable prototype.
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34.5.4 The executable prototypes will normally be partial models of the final SRS and will
probably be deficient in areas such as response times.  Any areas which cannot be explored
during testing of the executable prototype should be recorded, as it is important that the
limitations of the executable prototypes are documented. Typically those parts of the Software
Specification which are specific to the final implementation, such as built-in test, will be
omitted from preliminary validation and explored during the design phase.

34.5.5 The executable prototypes should have easily-used interfaces to encourage the
representatives of the customer and of the Design Authority to use them to explore the
functionality of the Software Specification. However, executable prototypes should also be
tested, using formally recorded test cases and results.  These tests should be designed to meet
specific criteria which have been planned in advance.  It would generally be inappropriate to
use white box test techniques, except where these techniques support a coverage argument for
the coverage of the functionality of the formal specification.  Black box techniques, such as
equivalence partitioning would be appropriate.

34.5.6 The development, formal verification, testing and limitations of the executable
prototypes should be documented in the Specification Record, as should any changes which
are made to the Software Specification as a result of the preliminary validation.

34.5.7 By preserving the Executable Prototype Test Specification for use during validation
testing, the Software Design Authority demonstrates continuity of requirements from the
beginning to the end of the SRS development process.

34.5.8 The use of a particular control or data structure in the executable prototypes should
not be taken to mean that the final SRS should use the same structure.  The control and data
structures in the SRS should be determined after careful investigation of the practical
alternatives, during the design process.

34.6 Checking and review of the specification process.   No guidance.

35 Design Process

35.1 The objective of the design process is to make a commitment to particular control and
data structures. Whereas the Software Specification defines the properties that should be
satisfied by the implementation, the Software Design determines how the properties should be
achieved.  The use of formal methods for design enables the design decisions on control and
data structures to be verified by formal arguments.

35.2 The Software Design normally requires several levels of abstraction, such as
architectural design, detailed design etc.  Each level should include all the information
necessary for the subsequent level.  For example, at architectural design, the requirements that
each structure will implement should be recorded.

35.3 The requirement for the Software Design to be constructed in a manner which permits
justification that it meets its specification tends to restrict the features and styles that may be
used.  The Design Team should pay careful attention to the following:

a) Analysability:  Some design options will make correctness hard to assure and this will be
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reflected in proof obligations that are difficult to discharge.  The Software Design Authority
should balance the design options against the ease of verification, bearing in mind the
availability of methods and tools.

b) Complexity and Size:  It is usual for the Code of Design Practice to specify limits for the
complexity and size of individual modules, because smaller, simpler modules are generally
easier to analyse and test and less likely to contain mistakes.  Although the overall size and
complexity of the SRS will generally be determined by constraints outside the control of the
Software Design Authority (ie by the overall system design), the Software Design Authority
should ensure that the Software Design does not increase the size and complexity to an
unacceptable level.  For example, a reconfigurable implementation may be much more
complicated, and ultimately less safe, than a simple design which is specific to the
application.  If necessary, the Software Design Authority should also consider proposing that
the Design Authority changes the system design to partition the software into smaller and
more dependable parts.

c) Modularity:  Comprehension, analysability and testability are all enhanced by appropriate
modularity, ie if the SRS is broken down into a hierarchy or network of modules such that
each module is small enough to be understood as a whole.  However, the interface between
modules needs careful design, as too many small modules may lead to a complex data flow
that is itself hard to understand.  There are tools which will provide metrics indicating high
coupling or linkage.  Cohesion of modules is harder to measure, but high cohesion will help
to reduce linkage.  Good modularity is assisted by modern high-level languages and by
techniques such as structured design.  Since in general smaller modules are much easier to
analyse, the size of individual modules and of the overall SRS needs careful consideration.

d) Encapsulation:  Encapsulation describes the degree to which all aspects of a particular part
of the problem space can be dealt with in one place.  Good encapsulation helps to avoid
moving complex data flow between many modules.  By restricting access to modules to well-
defined interfaces, encapsulation also protects data and functions from being accessed or
updated in inappropriate ways.  Good encapsulation is assisted by languages and methods
which enable data and functions to be brought together in modules, and which enforce
module boundaries.

e) Abstraction:  Abstraction is the degree to which the design methods and tools enable detail
to be hidden when an overview of the operations and data of the SRS is required.  Abstraction
is an essential property of methods and languages used for refining a formal specification.
The methods and tools should enable abstraction of both functions and data.

f) Concurrency:  Many of the proof theories which are used in the analysis of source code
have an implicit assumption that there is no concurrency.  Therefore, any decision to use
concurrent features, such as tasking, should be balanced against the limitations on methods
and tools available for analysis.  In addition the extra work involved if a sequential modelling
method is adapted to handle a specific concurrent model should be considered. Complex
concurrent designs are likely to be hard to analyse and hence to justify.  The traditional
alternative to concurrent designs involves the use of schedulers.  The design of the scheduler
should ensure that execution is predictable and that analysis can be applied to show that
critical timing requirements will be met.  Distributed systems inevitably introduce an element
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of concurrency and constraints on the behaviour of each node should be set to ensure that the
behaviour of the overall system is predictable.

g) Floating point:  The use of floating point arithmetic may simplify the source code but
introduces additional validation issues for floating point co-processors and for any built-in or
library algorithms. The use of floating point or fixed point arithmetic (where the compiler
provides scaled integers) may complicate the task of object code verification.  For a particular
application, the Software Design Authority should balance the difficulty of validating fixed or
floating point arithmetic against the additional complexity added to the application code by
the use of scaled integers.

h) Recursion:  Recursion often provides an elegant mathematical expression of the formal
specification or design and is invaluable in proofs.  Memory usage is generally difficult to
predict when recursion is used. Therefore, recursion should not be used in the implementation
unless strict bounds on the depth of recursion can be defined and hence it can be shown that
the permitted memory usage will not be exceeded.  An exception to this is in the development
of compilers where, in general, bounds on memory usage will not be a critical issue.

i) Interrupts:  For some applications, the use of interrupts may result in the simplest, most
understandable and most reliable design.  However, interrupts should be used with care, and
justification for how they are used, and why this use is safe should be provided.  The contents
of registers and shared variables should be considered, as well as when interrupts may or may
not occur, and the maximum possible frequency of interrupts.  Generally, static analysis
techniques do not support the use of interrupts and an application-specific model should be
developed.  For this to be practical, the use made of interrupts should be simple and well
understood.

j) Dynamic memory allocation (heaps):  The use of pointers is a natural way to declare
certain data structures, including linked lists, graphs and trees.  It is almost inconceivable to
imagine developing a compiler without the use of pointers.  Pointers may reference global
areas where objects are allocated and their storage is managed (the heap space).  The main
concern with using dynamic memory allocation is the difficulty of predicting whether the
memory space allowed is adequate, particularly if it becomes fragmented as it is reused. The
use of dynamic memory allocation is not a problem provided that exhausting the memory
space does not constitute a dangerous failure.  Note that even if the application code does not
use dynamic memory allocation, the compiler may well use memory space, typically when
arrays and records are passed as parameters to procedures and functions.  Object orientated
languages generally require the use of dynamic memory allocation.  For most real time
systems, heap space should only be used when:

i) the operations are deterministic;

ii) the pointers are typed (ie the space required for an object can be predicted);

iii) the space used is bounded;

iv) storage fragmentation does not occur.
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35.4 To ensure consistency throughout the Software Design, and an efficient design
process, the Software Design Authority should establish the general principles and style for
the design before working on the detail. Non-functional requirements tend to manifest
themselves as properties rather than as functions of the final SRS and it is important that a
considered approach is made to the following:

a) Defensive code:  Defensive code has the disadvantage of adding code to the application
and of making it more difficult and potentially harder to test.  Against this should be weighed
the increase in safety integrity gained by preventing errors from propagating and by having
the ability to detect an unexpected error and return the SRS to a safe state.  Before any
defensive code is written, the behaviour of the compiler when it detects statically
determinable constructs should be well understood, as the compiler may optimise out the
defensive code.  The option to include or exclude compiler generated checks should be
considered, as should the likely consequences of a compiler generated check detecting an
error.  Defensive code may be efficiently implemented using `exception' features of the
language if these are included within the language subset.  Defensive code should follow a
consistent plan, and should be identified as such by source code comments.  In general,
consideration should be given to adding defensive code to:

i) protect the software against the hardware (for example range check inputs to the SRS
and self-test routines such as RAM tests);

ii) protect the hardware against the software (for example range checks outputs even
when they can be statically determined always to be within range);

iii) protect the software against the software (for example range check inputs and outputs
for each procedure, add `others' clauses to `CASE' structures, explicitly check assumptions
and defend against domain incorrect errors such as divide by zero).

b) Fault-tolerance:  Fault-tolerance may be necessary where high availability is required, but
it should be used with care.  Like defensive code, it complicates the SRS and may make
analysis difficult.  Fault tolerance should be founded on statically determinable criteria (such
as two parallel, equally justified SRS systems) rather than on dynamic features such as
dynamic recovery blocks.  A case may be made for recovery blocks, provided that the
behaviour of the code is determinable at all times.  Behaviour under both persistent and
intermittent fault condition should be considered.  `Fail safe' measures, such as graceful
degradation or placing the software into a safe inoperable state should be considered,
especially where the software detects that its own behaviour or its inputs are not within the
designed parameters.

c) Reliability:  Reliability of software relates only to design faults (correctness), as software
does not wear out (unlike hardware).  Strictly, the correctness of software is either 0 or 1,
since errors are either present or not.  From a practical point of view, quantifying software
reliability is therefore a difficult issue and is concerned not just with the presence of errors,
but with the circumstances in which the errors are revealed, and the consequences of the
errors.  The only means by which achieved reliability can be measured directly is based upon
statistical testing (such as that suggested under validation testing).  High reliability in
software should be achieved by the diligent application of the principles in this Standard.  It is
important, however, that the Design Team appreciate that there may be a difference between
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safety and reliability:  a system with an unreliable `on' switch, that prevents it operating may
well be totally safe, although completely unreliable.  For reliability, the Design Team should
consider both availability (ie the probability of the system generating outputs on demand;
starting up; running without crashing and running without halting due to an error) and
reliability of the output (ie the likelihood of an incorrect, inaccurate or inappropriately timed
output).

d) Accuracy:  The Design Team should assess the ability of the algorithms to produce outputs
which are both stable and meet the accuracy requirements of the SRS. If, as previously
discussed, floating point arithmetic is deemed  inappropriate, the Design Team will be left
with the option of fixed point or scaled integer, or more complex solutions such as modular
arithmetic. Whichever solution is adopted, the Design Team or V&V Team should undertake
a computational methods study to ensure that the outputs are within the specified accuracy,
that discrete algorithms model continuous, real behaviour with sufficient accuracy and that
overflow (or underflow) does not occur.

e) Capacity:  When the amount of input or data that can be processed is variable, for example
because of interrupts, or the requirement to store and process records, the Design Team
should ensure that they can predict the maximum demands that could be made upon the
system.  The system should be shown to be robust and operable at the maximum demands,
and stress tests of maximum capacity should be included during the testing phase.  The
Design Team should also ensure that the target has the required capacity for the SRS and
should check:

i) stack sizes;

ii) buffer and queue sizes;

iii) static memory allocation;

iv) dynamic memory (heap) allocation;

v) temporary file or other memory usage.

f) User-interface:  Where the SRS has an interface directly to a user or operator, extra care
should be taken in its specification and design.  A prototype should be constructed and the
end user should be involved in ensuring that the SRS will function satisfactorily under
operational conditions.  Where the safety of the system could be affected by the actions of the
user as a result of output from the SRS or via input to the SRS, human factors experts should
be involved in designing and checking the user-interface and testing the usability of the final
system.

g) Software configuration and version identity:  All parts of the SRS should be identifiable
and should have a recorded version identity.  It should be possible, via the configuration
management system, to relate the version of each part to the versions of all other parts to
which it relates.  The Design Team should consider adding explicitly embedded identifiers,
including a version identifier, into the final version of the object code.  Where configurable or
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programmable units are used in a larger system, the use of a start up or self test procedure
which checks the identity of the parts of the SRS should be considered.  Behaviour in the
event that incompatible versions are detected should be defined.

35.5 Verification of the Software Design

35.5.1 For each stage of the design, syntax and type checking of the formal parts should be
carried out. Formal verification of consistency and of refinement of both functionality and
data from the Software Specification or previous stage should be performed, by constructing
and discharging all appropriate proof obligations.

35.5.2 Non-functional requirements should be checked by conducting performance modelling
(for example by the analysis of timing and accuracy) on the Software Design, to ensure that
the relevant requirements will be met even in the worst case.  The analysis may require that
prototypes whose actual performance can be measured are developed, so that the measured
data can be used in analysis.  Performance modelling should be conducted as early as possible
in the design, even if only rough estimates are available.  If performance constraints cannot be
met this may result in significant changes to the design, which would otherwise occur at a
very late stage.

35.6 Checking and review of the design process

35.6.1 Design reviews should be conducted at regular intervals, and the amount of material
reviewed should be consistent with each reviewer needing only a few hours preparation with
the review itself lasting for an hour or less.  This inevitably means  that the Software Design
will be reviewed in parts.  Periodically therefore, the reviewed parts should be subject to an
overall review which considers the wider issues and which looks at the Software Design as a
whole.

35.6.2 Performance modelling should also be subject to review by the V&V Team as
significant combinations of circumstances which would result in a failure to meet the
performance constraints may otherwise be overlooked.

36 Coding Process

36.1 Coding standards

36.1.1 The coding standard should:

a) restrict the use of language features which are not statically determinable or where the
implementation is compiler dependent;

b) keep modules small, while minimizing data flow between modules;

c) discourage the use of global variables and data;

d) encourage reuse as far as this assists comprehensibility, maintainability and integrity;
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e) enhance readability by the appropriate use of upper and lower case letters, meaningful
identifiers, comments, blank lines and indentation;

f) maximize use of the strong typing facilities provided by the language;

g) avoid use of complex or obscure language features which programmers may have
difficulty in using;

h) enforce the use of a simplified language syntax, using as far as practical one syntactical
structure at a time (for example nesting constructs within constructs, such as function calls as
parameters to procedures, should be avoided).

36.1.2 When low level or assembly languages are used:

a) the total amount of such languages should be kept very small;

b) a modular coding style should be used with each module being kept small;

c) the coding standards should enforce a style which mimics the control flow constructs of
high-level languages (for example avoiding jumps except to create structures such as
subprogram calls, if..then..else, case, and single entry, single exit loops);

d) the density of comments should be such as to render the code understandable;

e) language features which permit named identifiers, rather than addresses, should be used;

f) the coding style should be such as to make it easy for type checking to be performed.

36.2 No guidance.

36.3 The Code of Design Practice should contain procedures and guidance on how to avoid
or detect known faults in the compilation system and target hardware.

36.4 No guidance.

36.5 Static analysis and formal verification

36.5.1 Whether the whole or part of the Software Specification and Software Design have
been written in a formal notation, static analysis should be performed on the whole of the
SRS.  If the whole Software Specification and Software Design have been formally specified
and designed, and all relevant proof obligations have been constructed and discharged, then
the static analysis will only be required to demonstrate correct usage of the implementation
language.  Where only part of the SRS has been treated formally (because only part is relevant
to safety), static analysis should be used to show that there are no faults in the non-formally
specified parts which might affect the formally specified parts (such as writing to an array
with an out-of-range index).  Note that the requirement for the code to be free of anomalies
that would affect the safety of the system will generally require the use of all the static
analysis techniques listed in 26.2.4.
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36.5.2 The requirements of this Standard for static analysis should be satisfiable with the
help of a suitable tool, even if the process is only semi-automatic (ie the tool provides
assistance in the execution of a task, rather than performing it totally automatically). Manual
static analysis should not be used.

36.5.3 The requirement to construct and discharge proof obligations which cover the final
refinement step from Software Design to code is often  performed using static analysis tools.

36.6 Object code verification

36.6.1 It is unlikely that compilers for wide scope, high-level languages will be produced
which can be formally proven to produce correct code, and there is therefore a possibility that
the compilation system may introduce an error into the SRS that affects the safety of the
system.  The Software Design Authority should demonstrate by formal, static methods or by a
justified argument that such an event will not occur.

36.6.2 If formal, static methods are used, the object code should be treated as the
implementation of the source code, with demonstration of its correctness being achieved
either by construction and discharge of refinement proofs, or by static analysis. This analysis
should be concerned only with showing that the object code is a correct implementation of the
source code. Correctness of the source code should have been demonstrated via the
provisions of 36.5.  Listings generated by the compiler may be used as a guide in the analysis,
but they should not be assumed to be correct. Memory assignment can often be addressed by
performing the analysis left to right (ie from initialisation) in addition to bottom up (as is
usual for static analysis).  Left to right analysis enables memory addresses to be matched with
the identifiers in the source code.

36.6.3 If the static approach is inappropriate a justification should be produced which is
based partly on testing the object code, partly on additional analysis which is performed and
partly on the known performance of the compilation system (see 28.6). Whichever approach
is used, the ease of object code verification is heavily dependent on the combination of
implementation language, compilation system and coding standard.  Embedded, real-time
software tends to require language features which are difficult to test via generic compiler
validation and testing.

36.6.4 Where good commercial compilers of well designed, standardized languages are used,
the likelihood of errors being introduced by the compilation system is probably much less
than that of errors existing in the design or source code.  In these circumstances, the rigour of
justification required for the final implementation step, from source code to object code, is
less than that required from the specification to the design or from the design to the source
code.  This Standard permits this justification to be made using a single argument, relying on
a combination of analysis and testing.  Except for trivial systems, testing can never be
exhaustive but it does have the advantage of giving some confidence in the hardware on
which the software is dependent.  Justification is likely to be more difficult for an immature
language and compilation system, than for one which is equally well designed and has been
extensively used.  Experience shows that extensive use of a language, resulting in
identification of language insecurities, leads to more robust compilers.
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36.6.5 Object code verification based on testing might be achieved by the procedures
described in 37.3, but it is likely that, even if the same tests are used, special arrangements
will need to be made to show that the object code has been verified.  Tests should be
conducted using the final version of the object code.  If the language supports libraries and
separate compilation, then it is should be possible to test the object code in parts and justify
the linking separately.  Test coverage should be shown using some form of hardware monitor,
since coverage should be shown at machine instruction level the final version of the object
code is not the instrumented code.  To achieve object code coverage, it will probably be
necessary to restrict the ability of the compiler to select the evaluation order of `ands and `ors
in a single branch.  Branch coverage is probably impractical at this level.  The object code
verification essentially relies on the much tougher targets imposed by 38.2.2 of Part 1 of this
Standard for testing the source code.  For this reason, it is necessary that the mapping between
the source and object code is well understood and documented.  The ease with which this can
be done is language and compiler dependent.

36.6.6 Lists of known compiler bugs should be used to determine which language features
are likely to be error prone.

36.6.7 If object code verification is performed by testing, the logical place to record the
activity is in the Test Record.  If however, the justification of the object code is shown by
formal correctness proofs of the compilation process, then these will more logically fit in the
Design Record.

36.7 Checking and review of the coding process

36.7.1 The static analysis should be reviewed, paying especial care to any anomalies found,
to ensure that adequate and correct explanation of all anomalies has been recorded, and
genuine errors have not been explained away.

36.7.2 The results of the static analysis and formal verification should be used in reviewing
the source code.

36.7.3 The reviewers should assess the stated safety assurance of the compilation system and
determine whether adequate object code verification has been performed. The object code
verification should be reviewed, remembering that the purpose of object code verification is
to check the output of the compiler and linker, against the source code; not to check the
correctness of the Software Design.

36.7.4 If the object code verification is recorded in the Test Record, then the review should
also be recorded in the Test Record.

37 Testing and Integration

37.1 Principles of testing

37.1.1 Where full formal verification of the Software Specification and Software Design has
not been performed, the amount of testing will need to be increased. Sufficient testing should
be performed to show that the dynamic and performance requirements have been met, and
that the assumptions used by the formal methods are valid for the target system.
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37.1.2 Many of the criteria for test selection (such as boundary value tests) result in the
production of a set of test cases which are unrepresentative of the operating conditions of the
SRS.  Validation testing should correct this imbalance.  The Software Safety Case requires
validation testing to act as a diverse argument from the one of formal demonstration of
correctness.

37.1.3 Testing should be well planned, and should be documented, reviewed and justified in
advance of executing the tests.  Objective evidence of the extent of testing should be
monitored by means of both white box (eg statement, branch, Boolean) and black box (eg
requirement, equivalence partitions) coverage metrics.

37.1.4 The testing phase provides an opportunity to introduce additional independence into
the SRS development process.  Tests may either be designed by the V&V Team, or designed
by the Design Team and reviewed by the V&V Team.

37.1.5 It should be possible to design the tests without consulting the code.  Such tests
provide the most rigorous exercise of the code.  If it is found that designing the tests in this
way is not practical, the Software Design should be reviewed and improved.  If after
executing the tests, it is found that the required coverage has not been achieved, extra tests
should be added once it has been shown that the code does not implement additional
functionality not specified in the Software Design.  If test design is automated, the automated
test design tools should use the Software Specification and Design, and preferably the formal
representation, rather than the code.

37.1.6 Once code has been amended in any way, any tests which have already been run
should be rerun.  This is generally known as regression testing.

37.1.7 This Standard requires repeatability of testing.  This is only achievable if all elements
listed, any one of which may affect the outputs of a test, have been identified and placed
under configuration control. Tests which are driven by user input or which depend on real
time events should be given special consideration in the test planning stage.  Using a test tool
which simulates the user input and captures and analyses screen output will enhance
repeatability.  Repeatability may be achieved by controlling the environment such that the
expected result will lie between tolerance bands.  Test harnesses can also be designed to force
a deterministic, repeatable scenario.

37.1.8 The expected test results should be documented in such a way as to allow a
comparison with the actual outputs to be made.  In many cases, the comparison may be made
in an automated fashion.  There may be cases where there are differences between the actual
and expected outputs which do not indicate a test failure, because the differences are within
the specified tolerances of the SRS.  An explanation should be provided for all such
discrepancies.

37.1.9 The most valuable form of testing is that conducted on the real target hardware using
the real code, and this is the form of testing which provides most weight in arguments on the
safety of the SRS.  It may, however, be desirable to pre-run the tests on a host platform (either
to debug the tests or to provide better analysis of the test coverage).  If the real target
hardware cannot be used for the testing, hardware emulators can be used, but justification
should be provided for the correctness of these emulators.
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37.1.10 For testing purposes, it is sometimes necessary to instrument or add code to the
code under test. Instrumentation takes many forms, including adding source code, adding
object code, changing compiler switches to remove optimisation or invoke a debugger, or
changing the mode of the microprocessor to execute additional microcode.  Where this is
necessary, consideration should be given to the possibility of running all tests twice; once
instrumented, and once uninstrumented.  Otherwise, a justification should be made for the test
instrumentation to show that its inclusion does not affect the integrity of the results.  This
would indicate that although there is instrumentation to monitor coverage, drive the test or
capture the results, the object code of the module under test is identical to the operational
software.

37.2 No guidance.

37.3 Unit, integration and system testing

37.3.1 The goal of unit testing is to demonstrate that each unit performs as specified on all
paths. Since this is impractical in many cases, the demonstration should use some limited
form of path coverage, such as Linear Code Sequence and Jumps (LCSAJ), or paths limited
to single iterations of  loops.  Where formal verification has taken place before testing, it is
likely that many of the errors that would otherwise have been detected by testing will have
been removed. It may therefore be possible to justify that unit and integration testing be
reduced where full formal development of the SRS has taken place.  Automated test design,
using the formal representation of the Software Specification and Software Design should be
considered as a method of generating sufficient tests to achieve the required coverage.  The
targets for test design stated in this Standard are for a minimal coverage set, but are not
intended to be combinatorial (ie it is unlikely to be necessary, or even possible, to set all
variables to minimum and maximum values on every branch).

37.3.2 Many tools provide a variety of other coverage metrics which encourage systematic
testing and which provide better indication of the extent of the coverage of the SRS code.
Justification should be provided for the coverage metrics chosen.  Targets for each metric
should be set in the Software Verification and Validation Plan.  The best metrics to choose
are those for which the targets can be set to 100% (at least of semantically feasible
combinations), since where a target is less than 100%, the combinations tested are likely to be
the simplest ones.  Justification for the selection of targets should also be provided.

37.3.3 Experienced test designers should use engineering judgement to select additional test
cases which are likely to discover errors.  All test values should be set explicitly on each test
to ensure that tests remain self-consistent if extra tests are added. To achieve greater coverage
of the values that each variable can take, variables may be given different values on each test.
To ensure that variables are not confused with one another, consider ensuring that values of
the variables are different from each other. Variables which can approach or take the value 0
should be given special consideration, as problems with accuracy and instability may become
more apparent with near 0 values.  Other examples to consider are 1, -1, 90, etc. Test
variables should be exercised at the boundary conditions to ensure that final and intermediate
values do not result in underflow or overflow conditions.

37.3.4 For some systems, it may be possible to omit integration testing as a separate
exercise, provided that the software interfaces can be shown to be adequately exercised by the
system tests.
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37.3.5 System tests should be designed from the Software Specification and the Software
Requirement. Traceability via traceability matrices or a traceability tool should be provided
between the Software Requirement, the Software Specification and the tests..

37.3.6 The functions of the SRS should be demonstrated in cases where the SRS will be
most likely to fail, for example, with rapidly changing inputs, very large input files or a high
numbers of interrupts.  The Design Authority may need to provide special facilities for these
demonstrations..

37.3.7 he SRS should be run on the final hardware, with tests designed to show that
communication protocols, timing, initialisation of input and output devices etc are correct.

37.4 Validation tests

37.4.1 For a statistical indication of the achieved safety integrity of the SRS, the amount of
validation testing performed should be consistent with the required safety integrity level.  A
fully automated test environment should be developed to ensure that large numbers of tests
can be generated, executed and checked. Test tools should simulate inputs and capture and
check outputs. For small systems running on standard hardware platforms, it may be possible
to set up multiple test units to increase confidence in the integrity but this may not always be
practical, particularly with large or distributed systems.  Large scale validation testing should
still be performed, but certification of such systems will depend on engineering judgement.

37.4.2 Validation testing provides a valid argument for the Software Safety Case if there is
independence of the testing team from the Design Team.  To eliminate the concern that code
may be designed to pass specific tests, non-disclosure of validation tests is required.
However, good communications between the Design Team and the V&V Team should be
encouraged.  The V&V Team should be involved in the verification of the SRS at all stages
of the SRS development process and should provide constructive advice wherever it is
needed.

37.4.3 To avoid a potential single point of failure, the validation tests should be designed
from the Software Requirement, rather than from the Software Specification.

37.4.4 The Executable Prototype Test Specification should have been designed or examined
by the end users of the SRS.  Validation tests should also be developed from this specification
and run on the SRS.  This closes the loop between preliminary validation and the final
implementation and ensures that misconceptions have not developed during the project.

37.4.5 Testing should pay particular attention to safety, as well as to non-functional and
performance aspects of the SRS.  Experienced system engineers should be used to develop
test scenarios which are most likely to detect problems with the SRS.

37.4.6 For a statistical argument about the achieved safety integrity of the SRS, the
validation testing should use randomized, real or simulated data for inputs. The data should
be equivalent to the inputs that the SRS will encounter during its operational life.
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37.4.7 Discrepancies between the system which undergoes validation testing and the final
system may potentially undermine the diverse argument in the Software Safety Case.
Therefore the tested system should be, as far as possible, identical to the final system, and any
differences should be considered and justified.

37.4.8 Ideally, the validation testing should find no errors at all in the SRS, as these should
have been eradicated by the verification performed earlier in the SRS development process.
Any errors found therefore indicate a failure in the SRS development process.  The possibility
of there being other such failures should be investigated.

37.4.9 As with system testing, it is possible for the actual and expected outputs to differ, due
to slight inaccuracies in the outputs that are within specified tolerances.
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Section Six.  Certification and In-service use

38 Certification

38.1 The Design Authority has overall responsibility for the safety of the system within
which the SRS is contained.  Therefore the Design Authority's Certificate of Design for the
system will incorporate (either explicitly or implicitly) certification of the SRS. Where the
Design Authority is also the Software Design Authority, the SRS Certificate of Design should
be produced in the same way as if the software were developed by a subcontractor, ie retained
by the Design Authority and referenced in the supporting documentation to the Certificate of
Design for the system.

Certification is the formal process of recording that, as far as the Software Design Authority
is aware, the SRS is of adequate safety integrity, the work has been carried out in accordance
with this Standard and the SRS meets the Software Requirement.  Where a subcontractor to
the Software Design Authority has developed the software, the subcontractor should certify
their own contribution by signing the SRS Certificate of Design as the software developer.

38.2 Evidence of adequate safety integrity is provided by demonstrating compliance of the
SRS to the Software Requirement, since the Software Requirement contains the safety
requirements for the software.

38.3 No guidance.

38.4 No guidance.

38.5  Annex C provides a proforma for the SRS Certificate of Design.  Where this
certificate is not considered to be suitable, the Software Design Authority may submit an
alternative certificate, the form of which should be agreed by the Design Authority, the
Independent Safety Auditor and the MOD PM.  As a minimum, the SRS Certificate of Design
should contain:

a) a certificate identity number;

b) identification of the SRS version, mark, model or applicable identifier to which the
certificate refers;

c) certification of conformance to this Standard, possibly with exceptions as defined in the
Software Quality Plan;

d) certification of conformance to the Software Requirement;

e) reference to the documentary evidence of conformance;

f) identification of the parent system/subsystem (equipment within which the SRS resides)
version, mark, model or applicable identifier to which the certificate refers;

g) reference to any restrictions or limitations on use;
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h) signatures from responsible personnel, as appropriate:

i) the Software Design Authority;

ii) the Software Developer;

iii) the Software Project Safety Engineer (if different);

iv) the Independent Safety Auditor.

39 Acceptance

39.1 Acceptance testing by the MOD may not be required for the SRS in isolation if
acceptance testing is performed at the system level.  Acceptance testing may also include a
period of field trials.  The Design Authority should ensure that the criteria for acceptance of
the SRS from the Software Design Authority are equivalent to the MOD SRS acceptance
criteria.

39.2 The Acceptance Test Specification should be produced by the Software Design
Authority at an early stage of the SRS development process.  Many of the tests may also form
part of the validation process.

39.3 The results of the acceptance tests should be reviewed by the Software Design
Authority, the Design Authority and the MOD PM and any defects discovered should be
treated in the same manner as defects discovered during the validation process as discussed in
37.4

39.4 No guidance.

40 Replication

40.1 A necessary pre-requisite of preserving safety integrity is ensuring that each binary
image is correct.

40.2 No guidance.

40.3 Replicated binary images should be identical, although it is permitted for the value of
an embedded identification number to differ between copies, provided that the different
numbers occupy the same location and the same amount of memory.

40.4 Checks should be performed in order to gain assurance that an executable binary
image has been replicated without change.  These will typically involve the use of checksums
and reading the replicated image for direct comparison against the original master copy.

41 User Instruction

41.1 The User Manuals should identify the different classes of user for whom they are
intended, for example operators, installers or end users.  Separate User Manuals may be
provided for each different class of user.  The User Manuals for the software may be
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encompassed by the User Manuals for the system.  The quality of User manuals produced is
important and it is recommended that BS7649 (Guide to the Design and Preparation of
Documentation for Users of Applications Software) or SRDA-r1 "Developing best Operating
Procedures - a Guide to designing Good Manuals and Job-aids", ISBN 085-3563594, be
consulted.

41.2 The interface with the user is a potential source of hazard on complex software-driven
systems.  In particular, user mistakes can occur if the software operates in a way that the user
does not anticipate. Logic combinations in even relatively small software driven systems can
be enormous, but it is important the user is aware of the principles of the logical design, and
of any logic conditions that may have a safety implication, so as to minimize any chance of
the user mismanaging the system/software.  It is therefore vital to ensure that the appropriate
software-related instruction is promulgated to the end user, especially when the user only has
access to the system level User Manuals.

42 In-service

42.1 The Software Design Authority for the in-service phase may not be the same as that
responsible for the original development of the software, and may or may not be the same as
the in-service Design Authority (ie the Design Authority responsible for the whole system for
the in-service phase).

42.2 The anomaly reporting procedures for the SRS should be part of the Data Reporting
Analysis and Corrective Action System (DRACAS) that the in-service Design Authority is
required (in Def Stan 00-56) to set up and maintain.

42.3 The in-service Design Authority should ensure that all in-service anomalies reported
under the DRACAS are transmitted to the in-service Software Design Authority so that the
in-service Software Design Authority can determine any relevance to the safety of the
operation of the software.

42.4 No guidance.

42.5 No guidance.

42.6 Each anomaly report should:

a) give the date of the anomaly and of the report;

b) identify the personnel concerned;

c) identify the configuration of the system and the version number of the SRS;

d) state the problem and the conditions that produced it, including whether the system was
being operated within its design envelope;

e) assess the actual or likely consequences;

f) describe the corrective action taken.
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42.7 Although the principles for maintaining SRS are much the same as those for the
maintenance of other software, the problems to be addressed are likely to be far more
demanding.  When planning the maintenance of SRS, consideration should be given to:

a) the problems involved with large scale revalidation of small scale changes;

b) which configurable items will be held in an operational state and which will be re-
activated when required;

c) the expected life of the hardware on which the SRS is installed;

d) the availability of the support tools.

42.8 The content of the Software Maintenance Plan should be as detailed in annex B.22.
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Section Seven.  Application of this Standard Across Differing Safety Integrity Levels.

43 Software of differing Safety Integrity Levels

43.1 Part 1 of this Standard applies in its entirety to Safety Critical Software - ie Software of
Safety Integrity Level S4.  For software of lower safety Integrity levels (S1 to S3) a less
rigorous approach to the interpretation of some clauses may be acceptable, subject to
justification.

43.2 Annex D provides a tailoring guide for levels S1 to S3 with respect to clauses where
justified interpretation may be acceptable.  The degree of compliance to this Standard is
indicated by the levels `M', `J1' and `J2' for the varying Safety Integrity Levels specified.

44.3 No guidance.
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Documentation

This annex lists the software and documents to be produced in accordance with Part 1 of
this Standard.

As stated in annex B to Part 1, the Software Design Authority may decide, in conjunction
with the Design Authority and the MOD, that the information would be better presented
using a different contents list to that presented here.  For example a number of documents
may be incorporated into a single document, provided, firstly, that the complete document
set incorporates all the contents listed in this annex and, secondly, that there is easy
traceability between these requirements and their incorporation into the actual document
set.

B.1 Software Safety Plan

The Software Safety Plan for the production of SRS contains:

a) A definition of the purpose and scope of the Software Safety Plan, including those
parts of the Software Safety Case that are expected to be achieved by adherence to the plan.

b) Definitions and references.

c) Details of the management of the production of SRS, including:

i) the identification of the organizations and key personnel required by this Standard,
including Design Authority, Software Design Authority, Project Manager, Software Project
Manager, Project Safety Engineer, Design Team, V&V Team, Independent Safety Auditor,
relevant subcontractors or suppliers;

ii) CVs of key individuals who will be involved with the production of the SRS
including the leader of the Design Team, the V&V Team and the Independent Safety
Auditor;

iii) a justification that the seniority, authority, qualifications, training and experience of
all staff directly involved in the management, development, verification, validation and
production of the software are appropriate for their assigned tasks;

iv) a description of the interfaces between the MOD PM, the Independent Safety
Auditor, the Design Authority, Software Design Authority and their respective
subcontractors;

v) details of adequate resource planning, including, but not limited to, finance,
personnel, equipment and tools;

vi) a list and table of contents of the deliverable items to be produced;

vii) details of the certification process;
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viii) the definition of the circumstances under which matters concerning safety should be
referred between the Design Authority, the Software Design Authority or its
subcontractors, the Independent Safety Auditor and the MOD PM;

d) specification of the criteria for tool approval and limitations on the use of certain
tools;

e) the data to be collected for analysis purposes;

f) the procedures for evaluating the safety integrity of previously developed or
purchased systems;

g) details of the way in which the Software Safety Case is to be updated throughout
the project lifecycle as the plan is applied and evidence is accumulated.

h) reference to the Software Configuration Management Plan, Code of Design Practice
and Software Development Plan.

i) details and scheduling of the software safety reviews;

j) details and scheduling of the safety documentation.

B.2 Software Safety Case.

The Software Safety Case presents a readable justification that the software is safe in its
specified context, and includes:

a) A summary of the equipment-level design approach to safety, addressing:

i) a summary of the equipment safety case including a brief description of the system
functions and safety features and their means of implementation by software, hardware or
system architecture;

ii) the safety integrity levels of the software and hardware components

iii) the assignment of the software and hardware components to segregation units;

iv) a description of the processors and other hardware devices with an interface to the
SRS.

b) A description of the role of the SRS in ensuring safety, with a summary of the
software safety properties. The software safety properties should be related to the safety
integrity levels defined in Def Stan 00-56 and any standards mandated at the equipment
level.  Derived safety requirements that emerge during equipment design should also be
included.

c) A description of the software architecture and the way in which it is appropriate for
the safety integrity requirements for the SRS, including;
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i) the means used to segregate functions of different criticalities and to prevent
failures propagating;

ii) a statement of the software components developed;

iii) a statement of the object code size, timing and memory margins, resource
limitations, and the means of measuring each of these characteristics.

d) A description and justification of the two or more diverse arguments used to
demonstrate that the software satisfies its safety requirements, including:

i) Analytical arguments, including:

formal arguments that the object code satisfies the formal specification;
analysis of performance, timing and resource usage;

analysis of the effectiveness of fault detection, fault tolerance and fail safety features;

formal arguments used in preliminary validation to show that the formal specification
complies with the safety requirements in the Software Requirement.

ii) Arguments from testing, including validation testing of the SRS.

e) A description and justification of the SRS development process, including:

i) An analysis of the Code of Design Practice and the Software Safety Plan and an
assessment of their suitability for the safety integrity level of the SRS, including:

a description of the faults and hazards that will be specifically addressed and minimized by
the SRS development process;

an appraisal of the competence of the staff involved in the project.

ii) An analysis of historical data on the safety integrity of software developed using the
proposed or similar development processes.

iii) A safety analysis of the methods, tools and support software employed, justifying
their use with respect to the effects of possible faults in them on the safety integrity of the
SRS.

iv) A justification for the inclusion of any commercial off-the-shelf software (COTS)
or other previously developed software.

f) A description of any outstanding issues that may affect the safety integrity of the
SRS, and a statement of progress with respect to the Software Safety Plan and Software
Development Plan.
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g) A summary of changes to the Software Safety Case with a statement of the reason
for the change and an analysis of the significance and implications for safety of the SRS.

h) An analysis of the compliance with this Standard, the Code of Design Practice, the
Software Quality Plan and any other standards or guidelines referenced in the Software
Safety Plan.  A copy of the SRS Certificate of Design should also be included for the
operational Software Safety Case as should a statement of any concessions that have been
negotiated with the MOD PM.

i) A description of any field experience with the SRS or any part of it, including an
analysis of the impact of any software failures on the safety of the equipment, addressing
the potential consequences of the failure, its root causes, the relevance to the present
application, and the lessons for the software development process.  The in-service feedback
should include an analysis of the experience from any variants of the equipment.

j) The software configuration and versions of hardware, tools and support software
that this Software Safety Case refers to, defined by part number and version as set out in
the Software Configuration Management Plan.

B.3 Software Safety Records Log

The Software Safety Records Log contains or references:

a) All the data that supports the Software Safety Case.
It provides:

i) the evidence that the Software Safety Plan has been followed and that the results of
following that plan have been satisfactory;

ii) the results of all V&V activities;

iii) the results of software safety reviews;

iv) the results of the safety analysis of the SRS;

v) the results of software safety audits.

b) Details of supporting analyses for the Software Safety Case including:

i) an analysis and assessment of the Code of Design Practice and Software Safety
Plan;

ii) an analysis of historic software failure data and software development process data
for the system being developed and other similar systems;

iii) an analysis of the SRS development process including an analysis of the adequacy
of the methods and tools used.
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B.4 Software Safety Audit Plan.

The plan for the activities of the Independent Safety Auditor, containing:

a) a definition of the purpose and scope of the Software Safety Audit Plan;

b) details of the management structure and control for the audit programme;

c) details of planned updates to the Software Safety Audit Plan;

d) a description of the activities to be carried out, including their scope and depth;

e) details of the frequency and timing of auditing activities;

f) a description of  how the audit programme is to be integrated with the safety
programme, including a description of the interactions and dependencies of the audit
programme with the Software Development Plan, the Software Verification and Validation
Plan and the Software Safety Plan.

g) a specification of the contents of the Software Safety Audit Report.

B.5 Software Safety Audit Report.

The Independent Safety Auditor's report.  A number of reports with varying contents are
likely to be produced but, as a whole, the Software Safety Audit Report includes:

a) a brief description of the SRS and of its function;

b) a definition of the scope of the audit and a description of the work done in carrying
it out;

c) a review of progress against the Software Safety Audit Plan;

d) an assessment of the veracity and completeness of the Software Safety Case;

e) an assessment of the adequacy of the Software Safety Plan;

f) the results of audits of the project against the Software Safety Plan with respect to
the evidence accumulated in the Software Safety Records Log;

g) an assessment of compliance with the requirements of this Standard;

h) references to all documents examined;

i) conclusions and recommendations.
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B.6 Software Quality Plan.

The plan for application of the quality assurance activities to the SRS.  The plan includes
the following, which may contain additional detail to the requirements of other standards
that are also to be applied on the particular SRS development:

a) definition of applicable standards, procedures and plans, including this Standard,
applicable company QA procedures and other plans governing the SRS development;

b) clear identification and details of any allowable variations from this Standard and
from company procedures;

c) description of the Software Design Authority organization and responsibilities
relating to software quality assurance activities on the SRS development;

d) details of the quality assurance and audit activities relevant to the SRS
development, including information on when they are to be applied;

e) definition of problem reporting and corrective action practices and responsibilities;

f) definition of the review procedure for documentation.

B.7 Software Development Plan

The plan for the development process and its management. The plan includes:

a) definition of the SRS development project objectives;

b) details of the project organization, including management and reporting structure,
responsibilities and internal and external interfaces;

c) overview of the SRS development;

d) definition of the outputs from the SRS development process, including documents
and the phase at which each is produced;

e) definition of phase transition criteria;

f) project management and control information, including schedules, plans, budgets,
resources, staffing plan, milestones, project risk management, monitoring/measuring
activities and details of the software integration planning;

g) details of the metrics to be recorded, definition of target or allowable values, and
explanation of how the metrics are to be interpreted as a measure of development process
quality (may alternatively be included in a stand-alone Metrics Plan);

h) details of the software development environment, including tools, methods and
techniques, programming languages and development platform, with reference as
appropriate to the Code of Design Practice and Software Safety Plan
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B.8 Software Risk Management Plan

The plan for the risk management activities to be conducted on the SRS development
process.  The plan includes:

a) definition, or reference to, the risk management procedures to be applied, covering
risk identification, risk analysis and risk management;

b) details of the SRS development risks identified, including assessment of level of
risk, risk reduction measures and the effect of each on safety;

c) details of the risk analysis results, including identification of best case, most likely
and worst case development timescales;

d) details of the ongoing risk management and control activities, including frequency
of re-assessment of risk.

B.9 Software Verification and Validation Plan

The plan for the V&V activities to be conducted on the SRS. The plan should include:

a) definition of the roles, responsibilities, independence criteria and reporting lines of
those involved in the V&V;

b) identification of the V&V activities to be conducted throughout the SRS
development, their scheduling and identification of those responsible for performing each
activity;

c) description of the tools, techniques and methods to
be used in the V&V;

d) details of the strategy for each V&V activity, for example test case selection;

e) details of the procedures for reporting and resolution of anomalies that are found
during V&V;

f) the criteria for acceptance of each SRS item;

g) procedures for dealing with defects in the V&V process;

h) definition of the processes for controlling and reporting the results of the V&V
activities;

i) criteria for selection of coverage metrics and the selection of targets for each metric.

B.10 Software Configuration Management Plan

The plan for the configuration management and control of the SRS development.  The plan
includes:

a) definition of the purpose, scope and general applicability of the plan;
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b) definition of applicable standards (including this Standard and Def Stan 05-57)
specifications and procedures applicable to the software configuration management;

c) identification of the organization and responsibilities relating to configuration
management;

d) details of the definition and identification of configuration items, including naming
conventions, version numbering and establishment of baselines;

e) details of configuration control, change requests, the process for implementing
changes and the means of preserving the integrity of baselines and configuration items;

f) details of the tool(s), techniques and methods to be used for configuration
management, including reference to procedures for the use of tools;

g) procedures for collecting, recording, processing and maintaining data relating to the
configuration status;

h) requirements, procedures and schedules for the conduct of configuration
management audits;

i) definition of software archive, retrieval and release processes, including release
authorisation and requirements for data retention.

B.11 Software Configuration Record

The record of the configuration of the completed SRS. The record includes, for each
component of the SRS:

a) the name, version number and creation date;

b) details of the tools, their versions and configuration, used in the generation of the
component;

c) identification of the documentation (including issue numbers) and assurance
records relevant to the particular version of the component.

B.12 Code of Design Practice.

The definition of the procedures, methods and techniques to be used in the development of
the SRS.  The Code of Design Practice includes details of:

a) the formal methods to be used during the specification process;

b) the methods to be used for preliminary validation of the Software Specification;

c) the formal methods to be used during the design process, and the way in which the
Software Designs developed using these formal methods are to be formally related to the
Software Specification;
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d) the policy on whether formal arguments will be presented as rigorous arguments or
formal proofs and the cases where each should be applied;

e) the degree of detail required in rigorous arguments, and procedures by which proof
obligations are to be discharged;

f) procedures for resolving any differences of interpretation of requirements and
feeding back incomplete and inconsistent requirements to the originators of the Software
Requirement;

g) procedures for ensuring that any requirements that evolve during the course of the
development (derived requirements) are fed back to the Design Authority;

h) guidance on the production of the English commentaries on the Software
Specification and the Software Design;

i) the structured design methods to be used in the specification and design processes
and procedures for their use;

j) the implementation language and the way in which the source code is to be formally
related to the Software Design;

k) the checks required to ensure that the requirements of the implementation language
hold, including checks for conformance with any defined subset, and details of the means
by which all such checks will be made;

l) the coding practices to be followed, including detailed requirements for coding as
style, control structures and naming conventions;

m) the tools to be used during the SRS development process, including the compilation
system and those tools used to support the use of formal methods and structured design
methods;

n) procedures to be followed for using tools during the SRS development;

o) the means by which any known errors or inconsistencies in the tools to be used will
be circumvented;

p) definition of, or reference to, the procedures to be followed for the conduct of
reviews;

q) the failure assumptions which are to be protected against by defensive
programming measures and the course of action to be taken if failures occur;

r) change control procedures, including the course of action to be taken if faults in the
SRS are found during development and procedures defining the extent of rework
necessary;
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s) the method, extent and scope of the means for achieving non-functional
requirements;

t) the approach to be taken for fault tolerance, reliability, defensive code, accuracy,
capacity, user interface, maintainability, software configuration and version identity.

B.13 Software Specification

This document is produced by the Software Design Authority.  It contains:

a) a formal specification of the functions, safety functions and safety properties of the
SRS, written in one or more formal notations;

b) specification of non-functional properties of the SRS, written either in one or more
formal notations, or in conventional (non-formal) notations;

c) English commentary on the formal specification.

B.14 Specification Record

The Specification Record contains supporting documentation detailing the development
and verification of the Software Specification.  It contains:

a) minutes of any design meetings and design notes
describing possible alternatives for the Software Specification;

b) minutes of all design reviews conducted on the Software Requirement and the
Software Specification, including evidence of completion of actions;

c) all proof obligations constructed to verify the Software Specification and all formal
arguments which discharge the proof obligations.  Evidence of review and checking of the
proof obligations and formal arguments;

d) the listing of the executable prototype(s);

e) all proof obligations constructed to demonstrate the mapping between the
executable prototype(s) and the Software Specification and all formal arguments which
discharge the proof obligations;

f) evidence of review and checking of the proof obligations and formal arguments;

g) the Executable Prototype Test Specification;

h) all test documentation for the executable prototype tests, including test data (inputs
and expected outputs), test results, test descriptions, any harnesses or stubs required to
execute the tests;

i) evidence of review of the executable prototype tests;
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j) change history of the Software Specification and final configuration state.

B.15 Software Design

The Software Design is produced by the Software Design Authority.  It may consist of
several levels of documentation, and may consist of several separately documented
subsystems. The Software Design contains:

a) A policy for handling the non-functional aspects of the design, including the
method, extent and scope.  The policy addresses: fault-tolerance, reliability, defensive
code, accuracy, capacity, user-interface, maintainability, software configuration and version
identity.

b) A formal design of the functions, safety functions and safety properties of the SRS,
written in one or more formal notations.

c) A design of the non-functional properties of the SRS, written either in one or more
formal notations, or in conventional (non-formal) notations, including detail of the final
implementation of the design on the target hardware.

d) English commentary on the formal design.

e) Change history of the Software Design and code and final configuration state.

B.16 Design Record

The Design Record contains supporting documentation detailing the development of the
Software Design and code, and the verification of the Software Design.  It contains:

a) minutes of any design meetings and design notes describing possible alternatives
for the Software Design and code;

b) minutes of all design reviews conducted on the Software Design and code,
including evidence of completion of actions;

c) all proof obligations constructed to verify the formal design and all formal
arguments which discharge the proof obligations.  Evidence of review and checking of the
proof obligations and formal arguments;

d) the static analysis of the code, including evidence of review of the static analysis
and all anomalies found and actions taken as a result;

e) results of performance analysis;

f) the object code verification, including evidence of review of the object code
verification and all anomalies found and actions taken as a result.
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B.17 Code

Full listings of the source and object code, including the run-time system and any
command procedures necessary to build the code.

B.18 Test Record

The Test Record encompasses the following items:

B.18.1 Test Specification. The plan for each phase of testing (unit, integration, system
and validation).  For each phase, the Test Specification records the purpose and scope of all
tests or sets of tests, and describes the environment required.

B.18.2 Test Schedule. The detailed descriptions of the tests for each phase of
testing (unit, integration, system and validation).  For each phase, the Test Schedule
records the inputs and expected outputs for all the tests.  It also contains all stubs or
harnesses required to run the tests.

B.18.3 Test Report. The outputs and results of the tests for each phase of testing (unit,
integration, system and validation).  For each phase, the Test Report records the actual
outputs obtained and the comparison of the expected and actual outputs.  It details test
failures and actions taken as a result.  It also includes the coverage metrics achieved during
testing and justification where these fall short of the targets.  The coverage metrics include
coverage of the requirements and traceability to the requirements.

B.19 Acceptance Test Specification

The specification for the SRS acceptance tests.  The specification includes:

a) identification of each test;

b) a high level description and explanation of the purpose of each test;

c) identification of the requirement within the Software Requirement that each test is
intended to exercise;

d) description of the required test environment, including any stubs and harnesses and
the means of checking results;

e) the test conditions and input data (including user options) to be used for each test;

f) the expected results and pass/fail criteria for each test.

B.20 Acceptance Test Report

The report on the results of the SRS acceptance testing. The report includes:

a) a summary of the results of each test;

b) reference to the location of the detailed results;
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c) details of the comparison of  the expected and actual results of each test;

d) a statement of whether each test has passed or failed;

e) analysis of all test failures and recommendations for any necessary action.

B.21 User Manuals

Manuals providing instruction to users of the SRS, covering installers, operators and end
users.  The User Manuals include:

a) the version(s) of the software (and/or system) to which the manuals relate;

b) details of any restrictions and limitations in the use of the software/system;

c) description of the requirements and function of the software/system;

d) details of the safety functionality of the software/system, including any user
overrides;

e) instruction on the installation and initialisation of the software;

f) instruction on user actions necessary for safe operation of the software/system;

g) the procedures for and format of any parameters or data to be entered by the user;

h) examples of the use of the software/system;

i) explanation of all error messages and advice on correction.

B.22 Software Maintenance Plan

The plan for in-service support and software modification activities following delivery of
an initial release of the SRS.  The plan includes:

a) details of any user support requirements and processes;

b) details of the reporting procedures for in-service anomalies, including requirements
for action for those anomalies with safety implications;

c) SRS change control methods, including configuration control issues associated with
interfacing changed code and new assurance activities with existing code and assurance
activities;

d) description, or reference to, the methods, tools and techniques to be used for
software modification;

e) certification and acceptance procedures for SRS following modification.
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SRS Certificate of Design

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

CERTIFICATE OF DESIGN

For Safety Related Software

Certificate Number [unique identification number]

Safety Related Software Identification [name]

Safety Related Software Configuration
Version/Mark/Model [version number]

Design Authority [name]

Parent System/Subsystem Identification [name]

Parent System/Subsystem Configuration
Version/Mark/Model/Build Standard [version number]

Contract Number [contract reference]

We the designers of the above software hereby certify that :

  1. The software complies with :
     (a) Defence Standard 00-55 issue [issue number] as qualified in the:
          i. Software Quality Plan [document reference and issue number].
         ii. Software Safety Plan [document reference and issue number].
     (b) Software Requirements Specification [document reference and issue number].

  2. Evidence of compliance is provided in the Software Safety Case [document reference and
issue number] and the Software Safety Records Log [document reference and issue number].

  3.  The software is suitable for use as defined in  [title and reference to appropriate user
manuals] which includes details of any restrictions or limitations for use.
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Signatories:

Software Design Authority:
Signature:
Name:
Position:
Date:

Software Project Safety Engineer (if different):
Signature:
Name:
Position:
Date:

Software Developer (if different):
Signature:
Name:
Position:
Date:

As Independent Safety Auditor, I hereby certify that the work has been carried out in
accordance with the Software Safety Plan and to my satisfaction:

  Signature:
Name:
Position:
Date:
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Tailoring Guide of This Standard Across Differing Safety Integrity Levels

D.1 Introduction

This annex defines the interpretation of the main text of the standard for software of safety
integrity levels S1 to S3. The interpretation is presented as tailoring guide, in the form of a
table, showing the application of each subclause for software of each safety integrity level.
Much of the main text of the standard contains requirements that are considered to be 'good
standard practice' for all SRS of all safety integrity levels and hence, for these requirements,
the table shows no variation with integrity level. In other cases an activity may be required for
all safety integrity levels, but the extent of the activity or the amount of evidence may be
reduced with reducing integrity levels. The table is intended to provide developers with
flexibility for the development of software of lower integrity levels and permits them to
justify the development approach taken.

D.2 Application of this Standard

Table D.1 provides details of the requirements for compliance with each of the clauses in
Part 1 for the production of software of safety integrity levels S1, S2, S3 and S4 (although the
Standard in its entirety applies to S4, this level has been included for completeness).

In the interests of brevity, where all parts of a clause or subclause have the same compliance
requirements then they are not listed individually.  The categories used are:

M Must be applied.

J1 Justification is to be provided if the clause or part of the clause is not followed.  The
justification may indicate that negligible improvement in integrity of the software will
be gained from compliance, or that the cost of compliance is excessive for the benefit
gained.

J2 Justification for the omission or non-compliance of the roles, methods, products or
activities described within the clause is to be provided, although detailed justification
of non-compliance with the individual clause or part of the clause is not required.  The
justification may indicate that compliance would not significantly improve the
integrity of the software, or that the cost of compliance is excessive for the benefit
gained.



DEF STAN 00-55 (PART 2)/2
ANNEX D

D-2

Table D.1.  Tailoring Guide of this Standard across Differing Safety Integrity Levels

Clause S1 S2 S3 S4 Comments

SECTION TWO.  Safety Management

5 Safety Management Activities N/
A

N/
A

N/
A

N/
A

6 Software Safety Plan
6.1 M M M M Perhaps less detail for less

critical or smaller systems
6.2 J2 J1 M M
6.3 J2 J1 M M
6.4 J2 J1 M M
7 Software Safety Case
7.1 General M M M M The extent of information

provided will be less for lower
SILs

7.2 Development of the Software
Safety Case
7.2.1 J2 J1 M M
7.2.2 J2 J1 M M
7.2.3 J2 J1 M M
7.2.4 J2 J1 M M
7.2.5 J2 J1 M M
7.2.6 M M M M
7.2.7 M M M M
7.2.8 M M M M
7.3 Safety arguments Role of different types of

evidence varies with SIL.
Some discussion in Part 2

7.3.1 J2 J1 M M
7.3.2
7.3.2(a) J2 J1 M M
7.3.2(b) J1 J1 M M
7.3.3 J2 J1 M M
7.3.4 J2 J1 M M
7.3.5 J2 J1 M M
7.4 Justification of SRS
development process

The extent of information
provided will be less for lower
SILs

7.4.1 M M M M
7.4.2 M M M M
7.4.3 J1 J1 M M
7.4.4 J1 J1 M M
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Clause S1 S2 S3 S4 Comments
7.4.5 J1 M M M
7.4.6 J2 J1 M M
7.4.7 J1 M M M
8 Safety Analysis M M M M
9 Software Safety Records Log M M M M The amount of information for

S1 and S2 will be less than for
S3 and S4. If the Software
Safety Case is straightforward
the information in the Software
Safety records Log could be
incorporated in the Software
Safety Case

10 Software Safety Reviews M M M M These could be merged with
general project reviews for S1
and S2

11 Software Safety Audits
11.1 M M M M
11.2 J1 J1 M M At S1 and S2 the Software

Safety Audit Plan might be
included in the Software Safety
Plan

11.3 J1 J1 M M At S1 and S2, the audits might
be recorded in the Software
Safety Records Log

SECTION THREE  Roles and Responsibilities

12 General M M M M
13 Design Authority M M M M
14 Software Design Authority M M M M
15 Software Project Manager M M M M
16 Design Team M M M M
17 V&V Team
17.1 M M M M
17.2 J2 J1 M M Degree of independence may

vary
17.3 M M M M
17.4 M M M M
17.5 M M M M
18 Independent Safety Auditor
18.1 M M M M
18.2 M M M M
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Clause S1 S2 S3 S4 Comments
18.3 J1 J1 M M Software Safety Audit Plan

may be part of Software Safety
Plan at S1 or S2

18.4 J1 J1 M M Level of auditing may be
reduced at S1 or S2

18.5 J1 J1 M M Software Safety Audit Report
may be part of Software Safety
Records Log at S1 or S2

18.6 M M M M
19 Software Project Safety
Engineer

M M M M

SECTION FOUR.  Planning Process

20 Quality Assurance
20.1 M M M M
20.2 M M M M
20.3 M M M M
21 Documentation
21.1 M M M M
21.2 M M M M
21.3 J1 M M M
21.4 M M M M
21.5 M M M M
21.6 M M M M
21.7 M M M M
22 Development Planning
22.1 M M M M
22.2 M M M M
22.3 M M M M
22.4 M M M M
23 Project Risk
23.1 M M M M
23.2 J1 J1 M M Software Risk Management

Plan may be part of the
Software Quality Plan for S1
or S2

23.3 M M M M
24 Verification and Validation
Planning

Extent of Software V&V Plan
may reduce with SIL as extent
of V&V activities reduced with
SIL

24.1 M M M M
24.2 M M M M
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Clause S1 S2 S3 S4 Comments
24.3 M M M M
24.4 M M M M
25 Configuration Management
25.1 M M M M
25.2 M M M M
25.3 M M M M
25.4 M M M M
25.5 M M M M
25.6 J1 J1 J1 J1
25.7 M M M M
25.8 M M M M
25.9 M M M M
25.10 M M M M
25.11 M M M M
25.12 M M M M
26 Selection of Methods
26.1 M M M M .
26.2 Required methods
26.2(a) J2 J1 M M For lower SILs the extent of

the functionality specified
formally may be reduced.
Detailed requirements defined
under section 5

26.2(b) J2 J1 J1 M The use of structured design
methods is likely to be cost-
effective at all SILs

26.2(c) J2 J1 J1 M All analysers should be used
for S3 and S4, but requirement
for semantic analysis may be
relaxed for S1 and S2

26.2(d) M M M M Dynamic testing is essential at
all SILs, but the extent of the
testing may vary. Detailed
requirements defined under
section 5.

27 Code of Design Practice The extent of the Code of
Design Practice will reduce
with SIL as the requirements
for the methods reduce, but a
Code of Design Practice is
required at all SILs

27.1 M M M M
27.2 M M M M
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Clause S1 S2 S3 S4 Comments
28 Selection of Language
28.1 High level language
requirements

At lower SILs, language
selection criteria other than
integrity, eg tool support,
performance, and portability
may have greater influence
than at higher SILs

28.1(a) J2 J1 M M
28.1(b) J2 J1 M M
28.1(c) J2 J1 J1 M
28.1(d) J2 J1 J1 M
28.2 M M M M
28.3 M M M M
28.4 M M M M
28.5 Use of assembler
28.5.1 J2 J1 M M More extensive use of

assembler may be permitted at
lower SILs

28.5.2 J2 J1 M M
28.5.3 M M M M
28.5.4 M M M M
28.6 Compilation systems
28.6.1 M M M M
28.6.2
28.6.2(a) J1 J1 M M
28.6.2(b) M M M M The requirements for ISO 9001

and verification apply for all
SILs, but the extent of the
required verification is likely
to reduce with reducing SILs

28.6.3 M M M M The extent of the required
safety analysis is likely to
reduce with reducing SIL.

28.6.4 M M M M
29 Selection of Tools
29.1 M M M M
29.2 M M M M
29.3 M M M M
29.4 M M M M
29.5 Tool selection criteria
29.5.1 M M M M
29.5.2 J1 J1 J1 J1
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Clause S1 S2 S3 S4 Comments
30 Use of Previously Developed
Software
30.1 M M M M
30.2 Unreachable code J1 J1 M M
30.3 J1 J1 J1 J1
30.4 Previously developed
software not developed to the
requirements of this Standard

M M M M The extent of the reverse
engineering activity is likely to
be less for software of lower
SILs since the methods
required are less rigorous

30.5 In-service history M M M M
30.6 M M M M
30.7 M M M M
30.8 M M M M
30.9 M M M M
31 Use of Diverse Software M M M M

SECTION FIVE.  SRS Development Process

32 Development Principles
32.1 The lifecycle for SRS
development

M M M M

32.2 Production of the Software
Specification, Software Design
and code
32.2.1 M M M M
32.2.2
32.2.2(a) M M M M
32.2.2(b) M M M M
32.2.2(c) J1 J1 M M
32.2.2(d) J1 J1 M M
32.2.2(e) M M M M
32.2.2(f) M M M M
32.2.2(g) J1 J1 M M
32.2.2(h) J1 J1 M M
32.2.2(i) J1 J1 M M
32.2.2(j) J2 J1 M M
32.2.3 M M M M The extent of the content of the

Specification Record and
Design Record will vary with
SIL.

32.2.4 M M M M The extent of the content of the
Test  Record will vary with
SIL.
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Table D.1 (Cont)

Clause S1 S2 S3 S4 Comments
32.2.5 M M M M

32.2.6 M M M M
32.2.7 M M M M
32.3 Traceability
32.3.1 M M M M
32.3.2 J1 J1 M M
32.3.3 M M M M
32.3.4 M M M M
32.4 Verification of the Software
Specification, Software Design
and code
32.4.1 J1 J1 M M
32.4.2 J1 J1 M M
32.4.3 J1 J1 M M
32.4.4 J1 J1 M M
32.4.5 J2 J1 M M
32.4.6
32.4.6(a) J2 J1 M M
32.4.6(b) J2 J1 M M
32.4.6(c) J1 J1 M M
32.5 Review
32.5.1 Review of formal
verification

J2 J1 M M

32.5.2 Review of Software
Specification, Software Design
and code
32.5.2(a) M M M M
32.5.2(b) M M M M
32.5.2(c) M M M M
32.5.2(d) M M M M
32.5.2(e) J1 M M M
32.5.2(f) J2 J1 M M
32.5.3 Review of anomaly
correction

M M M M

32.5.4 M M M M
32.5.5 J1 M M M
33 Software Requirement
33.1 General
33.1(a) M M M M
33.1(b) M M M M
33.2 M M M M
33.3 M M M M
34 Specification Process
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Clause S1 S2 S3 S4 Comments
34.1 M M M M See clause 33 for variations

with SIL
34.2 Verification of the Software
Specification

M M M M See clause 33 for variations
with SIL

34.3 Preliminary validation
34.3.1 J1 J1 M M
34.3.2 J2 J1 J1 M
34.3.3 J2 J1 J1 M
34.3.4 J2 J1 M M
34.3.5 J1 J1 M M
34.3.6 J1 J1 M M
34.3.7 J1 J1 M M
34.3.8 J2 J1 M M
34.4 Preliminary validation via
formal arguments
34.4.1 J2 J1 J1 M
34.4.2 J2 J2 J1 M
34.5 Preliminary validation via
executable prototype
34.5.1 J2 J1 J1 M
34.5.2 J2 J2 J1 M
34.5.3 J2 J2 J1 M
34.5.4 J2 J1 J1 M
34.5.5 J2 J1 J1 M
34.5.6 J2 J1 J1 M
34.5.7 J2 J1 J1 M
34.5.8 J2 J2 J1 M
34.5.9 J2 J1 J1 M
34.6 Checking and review of the
specification process
34.6.1 M M M M See clause 33 for variations

with SIL
34.6.2 J1 J1 M M
34.6.3 J1 J1 M M
35 Design Process
35.1 M M M M See clause 33 for variations

with SIL
35.2 M M M M
35.3 M M M M
35.4 J2 J1 M M
35.5 Verification of the Software
Design

M M M M See clause 33 for variations
with SIL

35.6 Checking and review of the
design process
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Clause S1 S2 S3 S4 Comments
35.6.1 M M M M
35.6.2 M M M M
35.6.3 M M M M
35.6.4 J1 J1 M M
36 Coding Process
36.1 Coding standards J1 J1 M M
36.2 M M M M
36.3 J2 J1 M M
36.4 J2 J1 M M
36.5 Static analysis and formal
verification
36.5.1 J1 J1 M M
36.5.2 J2 J1 M M
36.5.3 J2 J1 M M
36.5.4 J1 J1 M M
36.5.5 J2 J1 M M
36.5.6 J2 J1 M M
36.6 Object code verification
36.6.1 J1 J1 M M
36.6.2 J2 J1 M M
36.6.3 J2 J1 M M
36.6.4 J2 J1 M M
36.7 Checking and review of the
coding process
36.7.1 M M M M See clause 33 for variations

with SIL
36.7.2 J1 J1 M M
36.7.3 J2 J1 M M
36.7.4 M M M M See clause 33 for variations

with SIL
36.7.5 J2 J1 M M
36.7.6 M M M M
36.7.7 J2 J1 M M
36.7.8 J2 J1 M M
36.7.9 J2 J1 M M
37 Testing and Integration
37.1 Principles of testing
37.1.1
37.1.1(a) M M M M
37.1.1(b) J1 J1 M M
37.1.1(c) M M M M
37.1.1(d) J1 J1 M M
37.1.1(e) J1 J1 M M
37.1.2
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Clause S1 S2 S3 S4 Comments
37.1.2(a) M M M M
37.1.2(b) J1 J1 M M
37.1.2(c) J1 J1 M M
37.1.2(d) M M M M
37.1.3 M M M M
37.1.4 M M M M
37.1.5 J1 J1 M M
37.1.6 M M M M
37.1.7 M M M M
37.1.8
37.1.8(a) M M M M
37.1.8(b) J2 J1 M M
37.1.9 J2 J1 M M
37.1.10 J1 J1 M M
37.1.11 M M M M
37.1.12 M M M M
37.1.13 M M M M
37.2 M M M M
37.3 Unit, integration and system
testing
37.3.1 M M M M
37.3.2 J1 J1 M M
37.3.3 J1 J1 M M
37.3.4 J1 J1 M M
37.3.5 M M M M
37.3.6 M M M M
37.4 Validation tests
37.4.1 M M M M
37.4.2 M M M M
37.4.3 M M M M
37.4.4 J1 J1 M M
37.4.5 J1 J1 M M
37.4.6 J1 J1 M M
37.4.7 M M M M
37.4.8 J1 J1 M M
37.4.9 M M M M
37.4.10 M M M M
37.4.11 J1 J1 M M
37.4.12 M M M M
37.4.13 J1 J1 M M
37.4.14 J1 J1 M M
37.4.15 J1 J1 M M
37.4.16 M M M M
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Clause S1 S2 S3 S4 Comments
37.4.17 M M M M

SECTION SIX.  Certification and In-service Use

38 Certification
38.1 M M M M
38.2 M M M M
38.3 M M M M
38.4 M M M M
39 Acceptance
39.1 M M M M
39.2 M M M M
39.3 J1 J1 J1 J1
39.4 M M M M
40 Replication
40.1 M M M M
40.2 M M M M
40.3 M M M M
40.4 M M M M
41 User Instruction
41.1 M M M M
41.2 M M M M
42 In-Service
42.1 M M M M
42.2 M M M M
42.3 M M M M
42.4 M M M M
42.5 M M M M
42.6 M M M M
42.7
42.7(a) M M M M
42.7(b) M M M M
42.7(c) J1 J1 M M
42.7(d) M M M M
42.7(e) M M M M
42.7(f) M M M M
42.7(g) M M M M
42.8 J1 J1 J1 J1

SECTION SEVEN  Application of this Standard Across Differing Safety Integrity Levels.

43 Software of Differing Safety
Integrity Levels
43.1 M M M M
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Clause S1 S2 S3 S4 Comments
43.2 M M M M
43.3 M M M M
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Guidance on the Preparation of a Software Safety Case

E.1 Introduction

The objective of this document is to give guidance to readers who are preparing a Software
Safety Case to the requirements of this Standard.  The document covers:

(a) the development of a Software Safety Case;

(b) the structure and form of the safety arguments;

(c) the justification of the software development process;

(d) the contents of a Software Safety Case.

E.2 Development of the Software Safety Case

E.2.1 Objective

E.2.1.1 A Software Safety Case is defined, in 7.1.2 of Part 1 of this Standard, as:
"a well-organized and reasoned justification, based on objective evidence, that the software
does or will satisfy the safety aspects of the Software Requirement".

E.2.1.2 The main objective of a Software Safety Case should be to provide assurance that
will convince a third party that the software will be adequately safe.

E.2.2 Software Safety Case lifecycle

E.2.2.1 Part 1 of this Standard requires the Software Safety Case to be an up-to-date record
of the current safety arguments and supporting evidence.  Software Safety Case development
should be an integral part of the software development process, and should evolve and be
elaborated as the design progresses.

E.2.2.2 The Software Safety Case should be formally issued to the MOD PM at agreed
points in the project lifecycle.  Projects following a conventional "waterfall" lifecycle should
formally issue, as a minimum, the following versions of the Software Safety Case:

(a) the preliminary Software Safety Case which justifies the way in which the Software
Safety Plan is expected to deliver Safety Related Software (SRS) that meets the safety
requirements to the specified safety integrity level;

(b) the interim Software Safety Case which contains the evidence that the functional safety
requirements are captured in the formal specification;

(c) the operational Software Safety Case which gives the complete set of safety arguments
and evidence that the safety requirements of the delivered SRS have been met to the specified
safety integrity level.
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E.2.2.3 The contents of the Software Safety Case should vary for these three versions.  For
example, since the preliminary Software Safety Case is written at the planning stage, it will
only contain safety arguments about what is planned to be done rather than what has been
done and achieved.  The supporting evidence should be collected as the project is carried out
and presented in later versions of the Software Safety Case.  E.5 gives details of the expected
contents of each version of the Software Safety Case.

E.2.2.4 Projects following different lifecycles from that assumed above should align the
formally issued versions of the Software Safety Case with key project milestones. For
example:

(a) Project A plans to deliver a Mark I system followed at a later date with a planned
upgrade to a Mark II system.  A minimum of six versions of the Software Safety Case should
be issued (ie preliminary, interim and operational version for both deliveries).

(b) Project B has been planned to be carried out with a period of trials followed by in-service
usage.  A minimum of four versions of the Software Safety Case should be issued (ie
preliminary and interim versions and an operational version before both trial and in-service
usage).

E.2.2.5 Once a system has entered service then the Software Safety Case should be kept up
to date by the organization responsible for supporting the software.

New releases or upgrades to the software should result in the Software Safety Case being
formally issued to the MOD for approval before being installed and used on any operational
system.

E.2.2.6 There are many systems currently in-service which do not have a System Safety
Case nor a Software Safety Case.  Upgrades of these systems for which this Standard is
invoked should include a Software Safety Case for any new or changed software.  The scope
of the Software Safety Case should be agreed with the MOD PM as it may not be cost-
effective to include existing SRS which does not change as a result of the upgrade.

E.2.3 Formal issue of the Software Safety Case

E.2.3.1 At various points in the project lifecycle the Software Safety Case should be
formally issued to the MOD PM.  Each formal release should involve the creation of a new
baseline of the Software Safety Case.  The baseline should include details of all relevant
documents, analysis and test results etc.  All changes made since the previous submission
should be clearly marked.

E.2.3.2 The Software Safety Case should be presented as a separate document (called the
submission) which should refer out to the detailed supporting evidence.  The submission
should focus on presenting the main safety arguments which justify that the software does or
will satisfy the safety aspects of the Software Requirement. The contents of the submission
are described in E.5.
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E.2.3.3 The submission should be a stand-alone document which can be read by itself
without constant reference to the supporting evidence.  It is important, therefore, that the
descriptive parts of the submission (eg system and design aspects, software description)
should be presented at an appropriate level of detail to enable the safety arguments to be
understood.

E.2.3.4 The section on safety arguments should aim at capturing the fundamental
relationships between the claims that are being made about safety and the supporting
evidence which has been collected (some examples are given in E.3).  This section should not
include detailed evidence which detracts from the general flow of the document.  Detailed
evidence should be summarized and referenced instead.

E.2.3.5 The Software Design Authority should ensure that the submission is consistent
with the supporting evidence.  The Independent Safety Auditor should check this aspect as
part of the review of the Software Safety Case.

E.2.4 Relationship to System Safety Case

E.2.4.1 Safety is a system property, and it is impossible to present safety arguments about
software in isolation. The Software Safety Case should, therefore, be part of and subordinate
to the System Safety Case.  Traceability from the Software Safety Case to the System Safety
Case should be provided for safety requirements and safety arguments.

E.2.4.2 Production of the Software Safety Case should follow the approach adopted for the
System Safety Case. For example, one possible approach for a complex system might involve
developing a top-level System Safety Case which is supported by lower level Subsystem
Safety Cases. Each Subsystem which contains SRS should then have its own Software Safety
Case.  It may also be useful to prepare a top-level Software Safety Case which covers
common aspects of all software in the system.

E.2.5 Structure

E.2.5.1 For extremely large or complex software systems, it may be necessary to structure
the Software Safety Case in line with the architecture of the software.  For example, a
Software Safety Case for a large software system composed of large subsystems of differing
safety integrity levels might be structured as:

(a) a set of Subsystem Software Safety Cases justifying the safety of each software
subsystem;

(b) a top-level Software Safety Case justifying how the combination of subsystems is safe.

E.2.6 Records management.  The definition of a Software Safety Case given above states
that the arguments about safety are to be based on objective evidence.  The evidence (eg
results of analysis, design and testing) will be collected as the project proceeds and the
software is developed.  Large amounts of evidence will often be collected and steps should be
taken to organize this information in a way that makes access to it easy and efficient.  Steps
should also be taken to ensure the safe and secure storage of these safety records.
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E.2.7 Tool support.  A minimum level of tool support needed to construct a Software
Safety Case would be a modern word-processor coupled with a compatible diagram editor.
The next level of tool support would to be use a modern documentation system which assists
a reader in navigating easily between different documents.  This sort of support would make
the assessment and review of a Software Safety Case much easier.  For example, a reader
would be able to jump between the safety arguments in the Software Safety Case and the
detailed evidence contained in other documents.  Finally, there are some specialized safety
case tools which are designed to support the systematic construction of safety cases and, in
particular, safety arguments.

E.3 Safety Arguments

E.3.1 Introduction.  A Software Safety Case consists of a number of different parts (eg a
description of the system and design aspects, the software safety requirements and the current
status).  However, the heart of a Software Safety Case is composed of safety arguments which
justify the claims that the software meets its safety requirements.

E.3.2 Structure

E.3.2.1 A safety argument can be thought of as relating some claim about meeting a safety
requirement to the evidence which has been collected to support the claim. Each safety
requirement should be covered in a safety argument.  This Standard requires safety arguments
of the achieved safety integrity levels of the SRS.

E.3.2.2 A claim can be split into a number of sub-claims which, when all are shown to be
true, ensure the truth of the top-level claim.  It is important to justify that each combination of
sub-claims is sufficient to support the higher-level claim.  Each sub-claim can then be further
split into more detailed sub-claims until the desired level of granularity is reached.  A top-
level claim might be decomposed into a hierarchy of sub-claims which could be viewed as
"evidence" for the top-level claim - so the evidence used at one level of the argument can be:

(a) facts, for example based on established scientific principles and prior research;

(b) assumptions, which are necessary to make the argument (these may be assumptions about
the real world or claims which will be substantiated later with supporting evidence);

(c) sub-claims.

E.3.2.3 Much of the detailed evidence should be referenced out to supporting documents.

E.3.2.4 Various ways of representing safety arguments have been developed.  Figure H.3
gives an example of part of a safety argument using a claim/sub-claim structure. The example
has been deliberately kept simple to exemplify the concepts.  Other approaches are more
sophisticated and their richer notations may allow more convincing safety arguments to be
made.
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E.3.2.5 The safety arguments could evolve over the lifetime of the project.  Initially some
of the sub-claims might actually be design targets, but as the system develops the sub-claims
might be replaced by facts or more detailed sub-arguments based on the real system.
Deviations in implementation should be analysed to see how this affects a sub-claim, and how
changes in sub-claim affect the safety argument.

E.3.2.6 If correctly designed, the higher levels of a safety argument should remain
substantially the same as the design evolves.  So the evolution of a safety argument at the top-
level should be confined mainly to the changing status of the supporting sub-claims and
assumptions.  For example, there may be an assumption that a given tool will operate
correctly, and this must be later supported by explicit field evidence or analysis.  The status of
the assumption would then change from "unsupported" to "verified" with a cross reference to
the supporting document.

E.3.3 Types of arguments

E.3.3.1 The types of the safety argument used in a Software Safety Case will vary
depending on the software design, the software development process chosen and the Software
Safety Case strategy.  A safety argument could be:

(a) Analytical, where the evidence is the results of some form of analysis, simulation or
modelling and the argument is based on showing how the analytical results contribute to the
claim.  For example, the results of static analysis could support a claim that some software
was free from certain classes of faults.  This claim could then form part of an argument about
the safe functional behaviour of that software.  Another example would be a deterministic
argument (or proof) constructed using the rules of predicate logic based on evidence in the
form of axioms.

(b) Empirical, where the arguments rely on observation of the behaviour of the software.  A
particularly important form of empirical arguments are those based on testing. For example,
the results of performance testing may be used to support part of an argument, supplemented
by design analysis, that the real-time behaviour of the software is safe.  Testing may also
provide sufficient evidence to allow arguments based on statistical inference to be constructed
that a system exceeds a particular reliability target with a certain degree of confidence.

(c) Qualitative, where the evidence might be adherence to standards, design rules, or
guidance.  In the case of design rules there could be some requirement for "defence in depth"
where no single fault in the system could affect safety.  The argument is then based on the
achievement of some agreed acceptance criterion based on compliance to the stated rules.

In practice it is unlikely that any safety argument will be entirely deterministic or
probabilistic.  It may consist of a number of claims about specific properties of the system
which may not necessarily be the same type.
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E.3.4 Robustness

E.3.4.1 There is an accepted safety principle in developing safety cases in other industries
(eg nuclear) that important safety arguments should be robust, ie a safety argument should be
acceptable even if there are some uncertainties or possible errors in the arguments or
supporting evidence.  This is the main reason for requiring two independent safety arguments
to support a top-level safety claim.  In particular, Part 1 of this Standard requires two or more
diverse safety arguments (ie different types of arguments based on independent evidence) of
the achieved safety integrity level of the SRS including:

(a) analytical arguments that the SRS is logically sound;

(b) arguments based on observing (primarily through testing) the behaviour of the SRS.
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E.3.4.2 Part 1 of this Standard requires an analysis of the independence of the diverse
safety arguments to identify any common factors in the arguments and to identify where the
arguments are sensitive to variations in the underlying evidence.  Guidance on carrying out
this analysis is given in annex F.

E.3.5 Strategies

E.3.5.1 Development of safety arguments for a Software Safety Case should be done within
the context of the safety arguments for the overall system.  This section discusses how the
required safety attributes of the system (eg reliability, availability and fail-safety) should be
mapped onto safety attributes for the software.

E.3.5.2 Options for the safety case argument

E.3.5.2.1 In safety-related systems, the primary concern is with dangerous failures, and the
safety argument should be focused on ways of inhibiting a dangerous failure.  The various
approaches to this can be characterized using the model for system failure shown in figure
E.1.

E.3.5.2.2 This follows the standard fault-error-failure model for software.  A fault is an
imperfection or deficiency in the operational software and is the primary source of software
failures.  However a program may operate as intended until some triggering input condition is
encountered.  Once triggered, some of the computed values will deviate from the design
intent (an error).  However the deviation may not be large enough (or persist long enough), so
the system may recover naturally from the "glitch" in subsequent computations ("self
healing"). Alternatively explicit design features (eg diversity, safety kernels) can be used to
detect such deviations and either recover the correct value (error recovery) or override the
value with a safe alternative (fail-safety).

OK
state

erroneous
state

safe
state

dangerous
state

- mode of use

error correction

erroractivated

safe failure

dangerous failure

Transition probability depends on:
- likely number of faults
- fault size and distribution

Transition depends on:
- fault tolerance in design
- nature of application

(‘grace’ time, self-healing?)

Transition depends on:
- fail-safe design
- what hazards exist

Figure E 1 : Model of system failure behaviour
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E.3.5.2.3 The overall approach to generating a safety argument involves:

(a) characterizing the safety arguments in terms of the transitions of the model;

(b) ensuring the implementation strategy is compatible with the safety argument;

(c) determining and evaluating the evidence to support the claims made about the
transition probabilities in the model.

E.3.5.2.4 This is a general model, and a particular safety argument can focus on claims about
particular transition arcs.  The main approaches are:

(a) A fault elimination argument can increase the chance of being in the "OK" state and
can hence reduce or eliminate the OK�  erroneous transition.  This is the reasoning behind
the requirement to use formal methods in this Standard which essentially support a claim that
the error activation rate was zero because there are no faults.

(b) A failure containment argument can strengthen the erroneous�  OK or erroneous �
safe transition.  An example would be a fail-safe design which quantifies the fail-safe bias.
This, coupled with test evidence bounding the error activation rate, would be sufficient to
bound the dangerous failure rate.

(c) A failure rate estimation argument can estimate the OK� dangerous transition.  The
whole system is treated as a "black-box" and probabilistic arguments are made about the
observed failure rate based on past experience or extensive reliability testing.

E.3.5.2.5 It is also possible to apply the arguments selectively to particular components or
fault classes, for example:

(a) A design incorporates a safety barrier which can limit dangerous failures occurring in
the remainder of the system.  The safety argument would then focus on the safety integrity of
the barrier rather than the whole system.

(b) Different countermeasures might be utilized for different classes of fault.  Each fault
class then represents a separate "link" in the argument chain, and all fault classes would have
to be covered to complete the argument chain.  For example, design faults might be
demonstrated to be absent by formal development, while random hardware failures are
covered by hardware redundancy.

E.3.5.2.6 The guidance above applies equally to continuously running systems and
shutdown-systems.  For example, it may be impossible to assure safety for some continuously
running systems (eg an aircraft flight control system) by relying on a transition from an
erroneous state to a safe state (ie aircraft stationary on the ground).  For these types of
systems, safety arguments should focus on error activation and error recovery.  One of the
main points of the model of failure behaviour given above is that it allows the differences in
safety arguments between different types of systems to be seen clearly.

E.3.5.3 Integrating the safety arguments with design and development.  The previous
discussion illustrates the key and closely coupled roles of the development processes and the
design in formulating the safety arguments. Sometimes, the design and development approach
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E.3.5.3 (Cont)

is geared toward implementing the operational requirements; the need to demonstrate safety
is only considered at a later stage.  This can lead to considerable delays and additional
assessment costs.  The safety arguments should be an integral part of the design approach and
the feasibility and cost of the safety arguments should be evaluated in the initial design phase.
This "design for assessment" approach should help exclude unsuitable designs and enable
more realistic design trade-offs to be made.

E.3.5.4 Top-down derivation of safety requirements

E.3.5.4.1 Safety is a property of the overall system rather than any given sub-component.
The safety requirements should be identified by system-level safety analysis and may include
functional behaviour, reliability, availability, fail-safety, maintainability, modifiability,
security and usability.  These safety properties or attributes should be mapped onto a set of
functional and non-functional software safety requirements that have to be implemented to a
given level of safety integrity.  Software safety requirements should include both positive and
negative safety requirements (eg "the rate of climb shall be kept within the following limits"
and "this function shall be inoperative during landing").

E.3.5.4.2 It should also be borne in mind that safety has to be maintained over the lifetime of
the equipment. So the system design and the associated safety arguments should consider
potential "attacks" on the design integrity over its lifetime (eg through normal operation,
maintenance, upgrades and replacement).  When these considerations are applied to
individual subsystems (typically by applying hazard analysis methods), a set of derived
requirements should be produced for the subsystems which are necessary to support the top-
level safety goal.  These derived requirements can be represented by attributes of the
equipment which can affect plant safety.  The most obvious attributes are reliability,
availability and fail-safety, but there are other more indirect attributes including
maintainability, modifiability, security and usability.

E.3.5.5 Implementing the attributes

E.3.5.5.1 When these attributes are implemented in a computer system design, it is difficult
to consider the hardware and software elements in isolation.  In order to implement the
computer system attributes there may be new derived requirements which would typically add
new functional requirements to the software and hardware components.  For example, in
order to maintain the overall integrity of the system, the software may rely on separate
checking hardware (such as external watchdogs), while the hardware status might be
monitored using software.

E.3.5.5.2 This implies that the safety arguments for a computer system should start with the
system architecture.  This architectural safety argument should demonstrate why the design
can implement the required behaviour.  The architectural safety argument will claim that the
safety requirements will be satisfied if the specified behaviour of the hardware and software
components is correctly implemented.

E.3.5.5.3 The safety argument at the software level therefore consists primarily of functional
requirements (eg to implement required hardware diagnostics, or to service a watchdog) but
some attributes may simply be targets to be achieved by the software design (eg worst case
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E.3.5.5.3 (Cont)

time response, or security levels).  Since attributes can change (eg be transformed into
functional requirements) as the design proceeds, it is important to maintain traceability of
these attributes between the various levels of the overall Safety Case.

E.3.5.5.4 The non-functional attributes at the system architecture level can lead to
requirements for additional functionality within the software.  These can be a major source of
complexity for the software.  In fact the software required for the actual control and
protection functions could be quite modest compared with the code needed to implement
these additional functions.

E.3.5.5.5 Figure E.2 shows an example of how some system attributes might be
implemented as software functions.

control or protection
functions

hardware availability

security

application modules

recovery routines

hardware diagnostics

voting algorithms on
redundant channels

data encryption
mechanisms

password authentication
network isolation

modifiability
additional software to
allow parameterization

Figure E.1 : Relating Software Functions to System Attributes

E.3.6 Example outline arguments

E.3.6.1 The System Safety Case will also impose "derived requirements" on the software
and these will include additional functional requirements (eg to support fail-safety and fault
tolerance mechanisms).  There may also be attributes such as timeliness which have been
apportioned by the systems analysis, that have to be implemented and demonstrated at the
software level.  In addition, the system architecture design may impose additional design
constraints (such as available memory) which must be respected before the system can
function correctly.  So the Software Safety Case should consist of a number of claims which
link back to requirements and constraints imposed by the System Safety Case.
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E.3.6.2 Table E.1 illustrates the types of claim that might be made for certain safety
attributes.  The text in italics refers to additional evidence which can be derived by
Verification and Validation (V&V) activities when the system has been partially or wholly
implemented.  It is not claimed that this table presents a complete list or even a minimum list,
since certain attributes (such as operability) may not be relevant for the given application, or
may be addressed by some other element in the system architecture.

E.4 Justification of the Software Development Process

E.4.1 Introduction

E.4.1.1 Software is not subject to failure modes caused by component degradation through
physical processes and subsequent failure that affects hardware components.  Instead,
software failure modes are systematic in nature, that is they are due to mistakes made in the
software development process.  Furthermore, it is well understood that, in general, it is
impractical to carry out a test programme which will exercise a software program completely.
It is also impractical for many systems built to high safety integrity requirements to carry out
operational testing to collect statistical evidence of safety integrity.  Consequently, the nature
of the software development process in terms of its capability to deliver software to the
required safety integrity is an important aspect that must be considered and justified in the
Software Safety Case.
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Table E.1 :  Example Outline Safety Arguments

Attribute Claim Argument Evidence/Assumptions

Functional
correctness

There is no fault
in the software
implementation

Formal proof of
specified safety
properties

Formal proof that
code implements its
specification

The design is simple enough to
be amenable to proof

Proof tool is correct (or unlikely
to make a compensating error)

Compiler generates correct code
(sub-argument might use formal
proof, past experience, or
compiler certification)

High quality V&V process

Test results

Software
reliability exceeds
system
requirement

Reliability can be
assessed under
simulated operational
conditions

Statistical test results

Timeliness The system will
always respond
within the
specified time
constraints

Software design
ensures execution
time is bounded and
statically decidable

Maximum timing decided by
static code analysis

Maximum time less
than limit

Dynamic tests of worst case
time response

Memory
Constraints

The system will
always have
sufficient memory
to continue
operation

Software design is
such that the memory
is bounded and
statically decidable

Maximum memory
use is less than limit

Analysis of memory usage

Stress testing of system

Tolerance to
hardware
random
failure

Identified
hardware failures
(computer system
and its interfaces)
are tolerated or
result in a fail-safe
response

Interface faults are
software detectable
(eg via redundancy or
encoding), Internal
failures are detectable
and fail-safe

All failure modes have been
identified

Fault injection tests to check
response

Tolerance to
overload

Demands in
excess of the
specified rates will
result in a safe
response

Design can detect
overload conditions
and either maintain a
degraded service or
perform a fail-safe
action

There is sufficient processing
power to cope with credible
levels of overload

Overload tests
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Table E.1 (Cont)

Attribute Claim Argument Evidence/Assumptions

Maintainabil
ity

Parameter
adjustments can
be made without
affecting safety

Software imposed
limits ensure
parameters remain in
the safe range

Systems level analysis of
allowable safe ranges

Validation tests

Operability System is robust
to faulty operator
actions

Design conforms to
human factors
standards

Interface prototyping

System is
designed to
minimize user
error

Actions checked for
safety implications
(eg software safety
interlocks)

Validation tests
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E.4.1.2 The Software Design Authority should justify how the software development
process will deliver SRS to the required safety integrity.  The justification should include:

(a) a safety analysis of the software development processes (including the methods,
tools and human tasks involved);

(b) an argument for the inclusion of any previously developed software;

(c) an assessment of the performance of the software development in terms of
measurements taken during the project;

(d) an analysis of historical data on the safety integrity of software developed using the
proposed or similar processes.

E.4.1.3 This clause gives detailed guidance on each of these parts of the justification in
turn.

E.4.2 Process safety analysis

E.4.2.1 Introduction

E.4.2.1.1 Process safety analysis investigates the ways in which a software development
process could fail and as a result cause a potentially dangerous software fault.  The analysis
identifies the measures taken to prevent this happening and the defences employed to detect
and remove the effects of such failures.  Weaknesses, omissions and duplications in the
software development process should be exposed by this analysis and these problems
addressed through process improvement activities.

E.4.2.1.2 The analysis should look at the ways in which the individual elements (ie the
methods, tools, support software and tasks) of the overall software development project can
fail and analyse how these failures could lead to potentially hazardous faults in the SRS.  The
analysis should consider ways in which these failures might:

(a) introduce faults (specifically dangerous faults) in the delivered software;

(b) allow faults to go undetected;

(c)  threaten the independence of safety arguments;

(d)  threaten the quality of the evidence used to support safety arguments;

(e)  increase project risks and so threaten safety;

(f)  violate the principle of reducing safety risks to As Low As Reasonably Practicable
(ALARP).

E.4.2.1.3 Process safety analysis can be used to support the justification for the Software
Safety Case that the software development process is adequate as a means of developing
software with the desired safety integrity. The analysis is normally only carried out at the start
of the project and its results should be incorporated into the preliminary Software Safety
Case.  The analysis should be repeated if significant changes are subsequently made to the
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E.4.2.1.3 (Cont)

software development process during the project.

E.4.2.1.4 The results of the analysis should be confirmed in the interim and operational
Software Safety Cases which should contain evidence of conformity to the proposed process.
Problem areas should be highlighted and corrective actions identified.  The operational
Software Safety Case should also include an assessment of the overall performance of the
process, together with a justification of why any changes do not affect the safety goals for the
system.

E.4.2.1.5 The process safety analysis procedure described in this document is based on
conventional hazard analysis techniques adapted to meet the needs of analysing the software
development process.

E.4.2.2 Concepts

E.4.2.2.1 Before proceeding to describe the process safety analysis procedure, some key
concepts and terminology are introduced.

E.4.2.2.2 The overall software development process is viewed as consisting of a number of
high-level activities (eg produce software specification, prepare module tests).  These
activities are typically broken down into more detailed activities (eg perform Z syntax check).
At this level, the methods, tools and human tasks which make up the activities are considered
in the analysis. Examples of these would be the Z specification language, the Z syntax and
type checking tool, and the modelling of requirements in the Z language.

E.4.2.2.3 A process failure is defined to be a failure of any method, tool or human task
which results in the incorporation of a potentially hazardous fault in the SRS.  Process
failures also include the failures of testing or review activities to detect software faults.
Examples of a process failure would be the failure of a development tool, a mistake made by
a programmer in implementing a module specification or the use of an inadequate or
inappropriate method.

E.4.2.2.4 A process hazard is defined to be the end effect of some combination of process
failures resulting in a potentially hazardous fault being incorporated into the SRS (for
example, "Hazardous timing fault in the operational software").  In other words, a process
hazard is a failure of the overall software development process to construct SRS with the
required safety attributes.

E.4.2.2.5 Process failures and hazards should be considered at an appropriate level to keep
the analysis to a manageable size.

E.4.2.3 Analysis procedure

E.4.2.3.1 The main phases in carrying out a process safety analysis are defined in table E.2.
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Table E.2 :  Process Safety Analysis Phases

Phase Description

Process Definition Model the software development processes in a suitable
form for analysis.

Process Hazard
Analysis

Analyse the software development process to identify the
process failures and their effects.  Identify the measures to
prevent these failures happening and the defences needed
to detect the results of any failures.

Review Review the results of the analysis and implement any
changes needed to the proposed software development
process.

E.4.2.3.2 These phases are described further in annex F.

E.4.3 Previously developed software

E.4.3.1 Part 1 of this Standard requires evidence of the suitability of both previously
developed software and Commercial Off-The-Shelf (COTS) Software.  Evidence may take
the form of:

(a) showing that the software has already been developed to 00-55 standards or some other
appropriate standard (eg RTCA DO178B);

(b)  third party safety certification of the software;

(c)  carrying out a programme of reverse engineering to gather the necessary evidence of the
safety integrity of the SRS;

(d) collecting evidence about the safety integrity of the software from its in-service usage.

E.4.3.2 When considering the reuse of previously developed software or COTS software it
should be borne in mind that software is prone to unexpected failure when used in a new
environment or by a different set of users.  For instance, an error in the way position co-
ordinates are handled may cause the failure of previously safe equipment if it is moved to a
different continent; or a progressive timing error may cause an anti-missile system to become
inaccurate if it is operated by a service unit which carries out reinitialisation less frequently
than previous users.  Therefore, the similarity between the applications used to gather in-
service safety integrity data and any proposed new application should be justified.

As a minimum, the following factors should be considered:

(a) data rates;

(b) functions used;

(c) operational mode;
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E.4.3.2  (Cont)

(d) size;

(e) complexity;

(f) throughput; and

(g) accuracy.

E.4.4 Process data

E.4.4.1 Measures of the performance of the software development process should be taken
and compared against acceptance criteria based on historical norms.

E.4.4.2 One of the most relevant types of measure of process performance in the context of
developing SRS are those software metrics concerning faults.  Measuring and analysing faults
can play a useful part in running any type of software project.  For example, an analysis of the
reasons why faults are not detected close to the point of creation can be used to spot
weaknesses in the software development process.

E.4.4.3 Analysing the density of faults over a system should be used to identify those parts
of the system where the density of faults is highest.  These parts should be reviewed to
determine if there are any underlying problems causing the high density of faults (eg the
review should consider whether the design is too complex, if the requirements are badly
understood or if more capable project staff should be used to rework these parts of the
system).The analysis of fault density will often reinforce the project team's judgement about
the areas of difficulty and should act as a catalyst for corrective action and process
improvement.

E.4.4.4 During the analysis of the data collected, any faults identified late in the
development lifecycle which are (or are caused by) faults introduced in the early lifecycle
should be highlighted since this indicates inadequacies in the review process, for example a
fault picked up during testing which is a specification fault.

E.4.4.5 Part 1 of this Standard requires acceptance criteria to be set for the measurements
to be taken and these to be judged against historical norms.  This implies that the software
developer has access to such information from a set of such measurements taken over past
projects.  Software suppliers should set up databases to collect information on faults and
populate it with data from past projects and retrospectively calculate historical norms.

E.4.5 Historical data

E.4.5.1 Part 1 of this Standard requires an analysis of historical data on the safety integrity
of software developed using the proposed or similar software development processes.
Historical evidence from previous projects and/or the published literature should be presented
to show that highly dependable software has been successfully produced using such a
development process.
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E.4.5.2 In the case of high integrity systems, failure rate data will be difficult to obtain
unless there are a lot of systems in operation.  Some of the guidance on error free operation
(see annex G) and the reliance that can be put on this evidence should be taken into account.

E.4.5.3 Evidence from past projects should be assessed by considering whether:

(a) the current system is similar to those produced on previous projects (eg similar size,
complexity, performance requirements, nature and difficulty of the application);

(b) the software standards for SRS on the past projects are as demanding as 00-55;

(c) the safety integrity level of the previous applications is similar or greater than the current
system;

(d) the staff used are at least as competent as the staff used on the previous projects.

E.5 Software Safety Case Contents

E.5.1 Introduction.  This section gives guidance on the different parts that make up a
Software Safety Case, the suggested contents of each part and how these parts should be
developed as the project progresses.

E.5.2 System and design aspects

E.5.2.1 This part, in conjunction with the software safety requirements and software
description, should give sufficient information to allow the safety arguments to be
understood.

E.5.2.2 The contents should be derived from the Software Requirement and include:

(a) an overview of the system architecture including the system boundaries and interfaces;

(b) an overview of the system functions;

(c) a brief description of the operating environment including both normal and abnormal
modes of operation;

(d) a list of the main system safety requirements;

(e) a description of the system design approach (eg dual channel, fault tolerant hardware).

E.5.2.3 This information should be available for the preliminary version of the Software
Safety Case.  It should be updated in later versions if any system or design aspect changes.

E.5.3 Software safety requirements

E.5.3.1 The contents of this part should be extracted from the Software Requirement and
should describe the role that the software plays in ensuring safety.  The contents should
include a list of the functional and non- functional software safety requirements that have
been derived from the equipment safety requirements by a process similar to that shown in
Figure E.2.  The safety integrity requirements for the software should also be documented
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together with any required software standards (eg configuration management, programming
language definition).  There should be traceability between the system and software safety
requirements.

E.5.3.2 This information should be available for the preliminary version of the Software
Safety Case.  The interim Software Safety Case should be updated if the process of writing a
formal specification for the software results either in new safety requirements on the software
being derived or the safety requirements being refined in some way.  The operational
Software Safety Case should incorporate any new or changed safety requirements.

E.5.4 Software description

E.5.4.1 The contents of this part should be derived from the Software Design and should
describe the architecture of the software and how this contributes towards safety.  The
contents should include:

(a) an overview of the software architecture (eg main subsystems and their functionality);

(b) a description of the main design features of the software (eg real-time aspects, user
interfaces, key algorithms, communication protocols, interfaces, database);

(c) the means by which software of different safety integrity levels is segregated (if relevant).

E.5.4.2 This information may not be available and will not be complete for the preliminary
and interim Software Safety Case.  The status of the information made available in these two
versions should be clearly indicated.

E.5.5 Safety arguments

E.5.5.1 This is the key part of the Software Safety Case. A safety argument should be given
justifying how each software safety requirement has been or will be met.  Part 1 of this
Standard requires a justification of the achieved safety integrity level to be given by means of
two or more independent safety arguments with, as a minimum, one argument based on
analysis and one based on the results of testing.  E3 describes some approaches to building
safety arguments.

E.5.5.2 This section should also include safety arguments that all reasonable measures have
been taken to reduce the software contribution to system hazards to an acceptable level.

E.5.5.3 The contents of this section should be derived from the technical approaches
described in the key planning documents (eg Software Safety Plan, Code of Design Practice
and the Software V&V Plan).

E.5.5.4 This part should focus on the high-level safety arguments and should summarize and
reference the evidence upon which the safety arguments are based.  A complete list of all
assumptions used in constructing the safety arguments should be given.  As safety arguments
at the software level could form part of a safety argument at the system level, there should be
traceability between the system and software safety arguments.
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E.5.5.5 The safety arguments should largely be in place for the preliminary Software Safety
Case with later versions reflecting any refinements of the more detailed parts of the
arguments that have occurred as the project proceeds.  The detailed evidence which supports
the safety arguments will not all be available for the preliminary nor the interim versions as
many of the project activities which generate that evidence will not have been carried out.
Each version of the Software Safety Case should clearly state the status of the supporting
evidence (ie whether it has been or is still to be collected).

E.5.6 SRS development process

E.5.6.1 This part should give a justification that the software development process is
adequate to achieve the required safety integrity level of the SRS.  E4 gives guidance on how
this justification is to be given.

E.5.6.2 This part should:

(a) briefly describe the main methods, tools and key project staff;

(b)  summarize the results of the Process Safety Analysis;

(c)  describe and justify the use of any previously developed software (including COTS
software);

(d) provide a measure of the performance of the software development process (this should
include the process data measures described in E.4;

(e) give the results of any safety or quality audits carried out;

(f) provide an analysis of historical data on the safety integrity of software developed using
the proposed or similar software development processes.

E.5.6.3 The results of safety and quality audits should be included with a note of any non-
compliances and recommendations identified by the auditor and the status of any corrective
actions taken or a justification for taking no action.

E.5.6.4 The results of an internal company or independent assessment of software process
maturity for developing SRS should be also be included.  Clearly, an independent assessment
would provide the stronger evidence.

E.5.6.5 The results of the process safety analysis should be included in the preliminary
Software Safety Case.  The other information should be added as it becomes available.

E.5.7 Current status  This part should state progress against plan (Software Safety Plan and
Software Development Plan) and discuss any outstanding issues which may affect safety such
as:

(a)  any safety requirements which are not being met

(b)  any new or unresolved hazards which could potentially be caused by the software (eg a
potentially hazardous software failure found during testing whose cause has not been
found or which has not yet been fixed).
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E.5.8 Change history.  This part should summarize any requirements changes which have
affected the software and their impact on the safety.  Any significant changes to the safety
arguments since the previous issue of the Software Safety Case should be described.

E.5.9 Compliance

E.5.9.1 A statement of compliance against this Standard and any other required software
standard should be given with a list of all non-compliances together with their status (eg
agreed, under discussion).

E.5.9.2 It should not be necessary to include a full clause-by-clause analysis of compliance
although such an analysis should be done and recorded separately in the Software Safety
Records Log.

E.5.9.3 This part should be available in the preliminary Software Safety Case and kept up to
date

E.5.10 In-service feedback

E.5.10.1 This part should summarize any relevant experience with the SRS or any part of it,
from realistic operational testing, trials or in-service usage.  This should include an analysis of
any software failures on the safety of the equipment, addressing the possible consequences (ie
hazards, accidents), the cause of the failure and any remedial action taken (this should include
not only fixing any software faults but process improvement actions).

E.5.10.2 This part will not normally form part of a Software Safety Case for a new system
under development.  However, if this is a development or enhancement of an existing system
then this part should be completed and the relationship between the changes and the in-
service feedback should be discussed (eg the reason for the software being changed might be
to remove a new hazard which was overlooked in the existing system).

E.5.11 Software identification.  This part should identify the current release of the software
citing a software release notice.
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Process Safety Analysis Procedure

F.1 Process Definition

F.1.1 Introduction  Process definition involves developing a process model of the overall
software development process.  A single model is needed so that the remaining steps in the
analysis have a single source and can be carried out without having to refer to a number of
different documents and plans.  The process model will be a useful entity in its own right as it
should enable the consistency and completeness of the overall software development process
to be judged.

F.1.2 Obtaining information on the process

F.1.2.1 Information should be gathered on the software development process by analysing
the project documentation particularly the plans, procedures and codes of practice that are
produced as a result of project planning.  It may be necessary to augment the information
gathered from the documents with interviews to understand the intent and application of these
documents.  The information gathered should include details of the proposed methods, tools,
procedures, standards, quality controls as well as details of the staff involved in each software
development activity.

F.1.2.2 As a minimum the following should be consulted:

(a) Software Safety Plan;

(b) Software Safety Audit Plan;

(c) Software Quality Plan;

(d) Software Development Plan;

(e) Software Risk Management Plan;

(f) Software Configuration Management Plan;

(g) Code of Design Practice;

(h) Software Verification and Validation Plan.

F.1.3 Constructing the model

F.1.3.1 Overall, the process model should identify:

(a) the inputs to each activity or task;

(b) the outputs created by each activity or task;

(c) how the inputs and outputs are being checked for faults;

(d) how it is being done, for example by whom, with what tools and techniques;

(e) when it is being done, for example at what stage in the project lifecycle.
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F.1.3.2 The scope of the model should include the software engineering, safety analysis,
safety management and support activities (eg configuration management) whose failure could
have an impact on the safety integrity of the SRS.

F.1.3.3 The process model should be a summary of existing documentation, which should be
cross-referenced. A clear mapping should be provided between the project documentation
and the process model.  For example, all the quality controls in the Software Quality Plan
should be represented on the model.

F.1.3.4 The example process model shown in annex H defines the overall software
development process at the top level and then refines each top-level activity into a more
detailed activity description.

F.1.3.5 At the most detailed level, the process model should indicate how each input and
output is checked for correctness and consistency, and what explicit checks are incorporated
to assure safety - these are usually linked to specific safety-related attributes identified in the
safety case (eg fail-safety, timeliness and reliability).

F.1.3.6 It is recommended that the activities which support the main development and
checking activities (eg configuration management, fault management) are modelled
separately.  As these activities interact with nearly all the main development and checking
activities, it would be very confusing to include these activities within the main process
model

F.1.3.7 Finally, following construction of the model, it should be reviewed for completeness,
internal consistency (eg matching of flows and common terminology) and any other checks as
required by the method or notation used to construct the process model.

F.1.4 Process modelling techniques

F.1.4.1 A variety of modelling techniques could be used to define the processes and their
interdependencies.  Some appropriate methods and notations are:

(a) business process re-engineering modelling approaches (eg Role Activity Diagrams);

(b) software design methods (eg data flow diagrams);

(c) project planning support (eg PERT and Gantt charts).

F.1.4.2 It is likely that more than one technique will be needed to meet the aims and
objectives of process safety analysis.

F.2 Process Hazard Analysis

F.2.1 Introduction

F.2.1.1 The main steps in this phase are:

(a) process hazard identification;
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(b) process failure analysis.

F.2.1.2 Each of these stages is described below.

F.2.1.3 Annex H gives examples of parts of an analysis undertaken on the software
development process of a project which is developing safety-critical software to the
requirements of 00-55/1 (April 1991).

F.2.2 Process hazard identification

F.2.2.1 Process hazard identification requires the identification of the safety attributes
relevant to the operational software and rewording each attribute into a hazard definition (an
unwanted state of the software).

F.2.2.2 Table E.1 (see page E-11) gives a list of potential safety attributes that should be
used as a basis for process hazard identification.  This checklist should be supplemented by
consideration of the safety requirements for the software and a review activity to ensure that
all safety attributes (process hazards) have been identified.

F.2.3 Process failure analysis

F.2.3.1 Objective.  At every stage in the software development process, faults can be
introduced into the software products as a result of failures in the software development
activities.  Process failure analysis seeks to identify:

(a) how software processes can fail and the effects of the failures in terms of introducing
or failing to detect potentially hazardous faults in the software products (ie process hazards);

(b) the measures that are taken to avoid these failures;

(c) the defences against these failures in terms of detecting and removing faults in the
software products;

(d) the common causes of failures in the software development process.

F.2.3.2 Process failure mode analysis

F.2.3.2.1 The first step of process failure analysis should identify:

(a) the process failures which could occur and result in a process hazard;

(b) what measures have been taken to avoid process failures;

(c) what defences exist to detect the results of process failures so that remedial action
may be taken to remove the faults found.

F.2.3.2.2 Further guidance for the sorts of evidence that should be collected about the
measures and defences is given in annex J.
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F.2.3.2.3 In carrying out this analysis, it is important to understand the main failure modes of
the process and how these are caused.  The main types of process failures are caused by:

(a) mistakes made by project staff in carrying out the creative, knowledge based and
highly skilled tasks that form part of the software development process;

(b) the use of inadequate or inappropriate methods of carrying out these processes;

(c) the failures of tools which result in faults being introduced into a software product
(eg a compiler fault) or failure of a checking tool to detect a fault in a product.

F.2.3.2.4 Process failures which could result in or contribute to software faults should be
identified by:

(a) analysing historical data of the type of faults that are found in subsequent checking
activities and in operation;

(b) assessing project risks to give an indication that certain activities are vulnerable (eg
because of lack of resources, insufficiently experienced personnel, novel tools).

Knowledge of process failures which occurred in past projects should be used as a starting
point for identifying possible process failure modes as part of this step.

F.2.3.2.5 The defences against process failures should be assessed by considering the
impact of process failures on the software products that are produced in the development
process.  To do this, the different attributes that are required of a product and how these might
be compromised should be examined.  For example, in the specification, the process failures
that affect the "correctness" attribute could be examined.  These could include faults relating
to syntax, internal consistency, completeness and validity.

F.2.3.2.6 For each attribute, the initial defences within that phase and in "downstream"
activities should be identified.  The primary checks are applied to the product itself, while the
"downstream" checks are applied to derived products (such as the complete program).  Table
F.1 provides examples.

Table F.1:  Example Defences

Attribute Primary defences Downstream defences

Syntax  � Z syntax checker

Internal consistency  � specification review

 � Z proof obligations

 � Design to
specification
refinement proof

Completeness  � tracing to the requirements

 � animation of the specification

Validity  � prior prototype
implementation

 � animation of the specification

 � Validation tests
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F.2.3.2.7 The analysis should be supported by subsidiary documents justifying the
choice of specific methods and tools (eg codes of design practice and tool integrity
assessments).  Such subsidiary justifications can be reused for subsequent projects.  The
ALARP principle should be considered in this justification: it may be reasonable to introduce
further defences if their cost is low, but it may be possible to argue that certain other
techniques are disproportionately expensive for the improvement they bring.

F.2.3.2.8 As with traditional, product-based hazard analysis, some means of
classification of the impact of process failures should be used to focus the analysis. One way
of classifying the effect of process failures illustrated in table F.2.

Table F.2.  Classification of Impact of Process Failures

Category Description

Major These seriously undermine the safety arguments and cannot be readily
compensated for

Minor These reduce assurance in the evidence but can be corrected or
compensated for elsewhere

Negligible The rest

F.2.3.2.9 A classification such as this should be used to prune the analysis at this
relatively early stage so that low impact process failures are not considered any further thus
leaving the analysis to concentrate on the more important process failures.

F.2.3.2.10 The results of the analysis should then be summarized for example in a
coverage matrix which shows what checking activities are applied to each development
activity.  The summary combined with the detailed analysis provide two contrasting levels of
analysis.  The summary is drawn up as a means of aiding the review of the overall process.

F.2.3.3 Cause and effect analysis

F.2.3.3.1 The next step is to draw up the detailed cause and effect relationships between
the process failures and the process hazards identified in the earlier steps. Techniques such as
fault tree analysis, event tree analysis and cause consequence diagrams may be appropriate.

F.2.3.3.2 This step should result in a better understanding of the causes and defences
relevant to each process hazard.  Additionally it enables a comparison to be made between the
level of defences provided for the various process hazards.  For example, if fault tree analysis
were used then it would be possible to calculate the cut sets for each process hazard.  The
nature of the elements making up each cut sets gives an indication of the strength in depth of
the software development process and this could be one aspect to be considered in the review
of the process hazard analysis.
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F.2.3.4 Common mode failure analysis

F.2.3.4.1 The analysis should be supplemented by consideration of the potential sources
of common mode process failure within the various development and checking activities.
Common sources of failure could have a significant impact on the independence of top-level
safety arguments.

F.2.3.4.2 Within a Software Safety Case there is a requirement to provide diverse (ie
independent) safety arguments of the achieved level of safety integrity of the SRS.
Specifically, there are requirements to provide at least two diverse arguments derived from
the results of analysis and testing.

F.2.3.4.3 The process should be analysed to determine whether there is any
commonality in the analysis (ie the main development activities) and testing (ie the main
V&V activities) between:

(a) the inputs and outputs used (eg using the developer's specification for reliability
testing);

(b) the methods and tools;

(c) the personnel (eg a developer involved in designing V&V tests).

F.2.3.4.4 Where a common factor exists, a justification should be given as to why this is
acceptable.  For example there could be a common factor between the V&V and development
activities as both are based ultimately on a common statement of requirements.  However, it
may be infeasible to provide two independent but equivalent statements of requirements and
thus emphasis should be placed, in this instance, on carrying out measures to ensure the
integrity of the statement of the requirements.

F.3 Review

F.3.1 The results of the process definition and process hazard analysis phases should be
reviewed to assess the adequacy of the software development process as suitable for
developing software of the required level of safety integrity.

F.3.2 The review should take the form of an independent peer review involving key
members of the project team together with the Independent Safety Auditor and the MOD
Project Manager (or his/her specialist advisors).  The review should take into account factors
such as:

(a) compliance with best software engineering practice;

(b) compliance with the requirements of this Standard, Def Stan 00-56 and any other
related safety standards;

(c) the number and strengths of the measures and defences employed; and

(d) the completeness, accuracy and objectivity of the supporting evidence.
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F.3.3 Compliance with best software engineering practice should take into account new
technical advances which offer the ability, for instance, to remove certain classes of faults.
For instance, it has recently become possible to detect via the use of an analysis tool all run-
time exceptions for programs written in some languages.

F.3.4 The review should consider whether adequate sets of measures and defences exist
for all process hazards.  For example, it is recommended that for each process hazard there
are at least two defences: for example one defence based on a review activity and one based
on an automated analysis or testing task.

F.3.5 The review should seek to identify any inadequacies, non-compliances, omissions or
duplications in the proposed software development process. Opportunities to improve the
process should also be considered.  The review should decide on the actions which need to be
taken to resolve any problems. Records of the review should be taken and stored in the
Software Safety Records Log and the results of the review summarised in the Software Safety
Case.
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Product Evidence

G.1 Introduction

G.1.1 Products are the deliverables from the software development process.  This means
items such as the source code, user documentation, specification and designs as well as all
the outputs from the V&V activities.

G.1.2 One of the most common ways of gathering evidence about a product is through
testing.  The programme of V&V activities carried out on a safety-related project will
provide direct evidence of attributes such as reliability and performance.  The unit,
integration and system testing and most of the system validation testing activities called
for by Part 1 of this Standard are widely practised and understood by software
development organizations involved in the development of SRS and no further guidance is
given in this document for collecting the evidence produced by these activities.

G.1.3 Part 1 of this Standard does require, if feasible, a test programme to be run to
collect statistically valid evidence of the safety and reliability properties of SRS.
Consequently, a detailed discussion of the complex issues involved in setting up such a
programme is given in the remainder of this section.  Three different approaches
(statistical/operational testing, reliability growth modelling and error free operation) to
collect evidence of software reliability are given together with a discussion of the
problems and limitations of these approaches.

G.1.4 It is acknowledged that safety and reliability are different attributes.  In particular,
a safe system may not be a reliable one and vice-versa.  However, many safety-related
systems are required to achieve a certain level of reliability in order for them to be
considered safe.  The guidance on reliability is aimed at these types of systems.

G.2 Statistical/Operational Testing

G.2.1 Many claims that software is "sufficiently" reliable are based upon indirect
evidence, for example of the quality of the development process.  The only means of
measuring the reliability of software directly depends upon being able to observe its
operational behaviour for a sufficient time.  Informally, if a program is observed to execute
failure-free for long enough (or if a sufficiently small number of failures are observed
during a long period of operation), it would be reasonable to accept claims that it is
sufficiently reliable for its intended purpose.  More precisely, such data allows precise
quantitative assessments of the reliability to be made.

G.2.2 With safety-related systems, it is rarely the case that real operation can be used to
obtain this kind of data: there is a need to know that a system is sufficiently reliable before
people are exposed to the risk of its operation.  It will therefore be necessary to simulate
operational use in a testing environment: such testing is called operational testing or
statistical testing.  The key idea here is that the selection of test cases is carried out in such
a way that the probabilities of selection are the same as those in real operation, so that any
estimates of reliability in the testing environment can be assumed also to estimate the
operational reliability.
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G.2.3 Clearly, the difficulty of doing this will vary considerable from one application to
another.  In certain industries there is already considerable experience of creating realistic
simulations of physical system behaviour - "iron birds" in the aircraft industry, for
example - and it might be expected that in these cases it would also be possible to conduct
accurate operational tests of software.  It seems likely that many, if not most, SRS
applications concern the control of well-understood physical systems, for which accurate
simulation of behaviour is possible.  This contrasts with many business systems, for
example, where the nature of the use to which the product will be put can only be
predicted imperfectly.

G.2.4 Sequences of statistically representative test cases can be constructed in many
different ways.  In some applications, there may be similar products in operation, and
scripts of operational use can be recorded directly. In others, it will be necessary to
construct the operational profile - the probability distribution over the set of all inputs -
indirectly.  One way to do this is to partition the input space in some convenient way, so
that the probabilities of the different partitions are known, and the probabilities of the
inputs within each partition can be approximated.  A recent example of this was the
statistical testing of the software for the Primary Protection System (PPS) of the Sizewell
B nuclear power station.  Here eleven main scenarios were identified for which the PPS
would be called upon to trip the reactor and keep it in a safe state following trip.  An
example of such a scenario is a major pipe break resulting in loss of coolant.  Experts were
able to assign probabilities to the different scenarios according to their knowledge of the
wider plant, and historical data.  The statistical testing was then the selection of many
particular demands within these scenarios.  Here the demands were chosen by randomly
varying the parameters of each scenario: thus in the case of a pipe break, the size and
location of the break would be chosen randomly, again using expert judgement for the
probabilities of the different alternatives.

G.2.5 This kind of operational testing can be used in two main ways - for reliability
growth estimation, or for estimating reliability from evidence of failure-free working  - as
shown in the next sections.  In both cases, it should be emphasized that the accuracy of the
results will depend crucially upon the accuracy with which the simulation represents the
statistical properties of the real operational environment.

G.3 Reliability Growth Modelling

During operational testing it is important to record the data accurately.  This will be of two
types: time, and counts of failure events.  The time variable to be used will depend upon
the application, and must be chosen with care.  In process control applications, for
example, the time will probably be actual plant operating time, and our reliability might be
expressed as a rate of occurrence of failures, or a mean time to failure.  In a safety system
which only has to operate when (infrequently) called upon, such as the PPS above, time
will be a discrete count of demands, and the reliability might be expressed as a probability
of failure upon demand.
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G.3.1 Reliability growth models assume that, if failures occur during operational
testing, the faults that cause these are fixed (or, at least, fixes are attempted).  The models
use the resulting succession of times between failures to estimate the reliability of the
software and predict how this will change in the future on the assumption that fault-fixing
proceeds in the same way.

G.3.2 This is one of the most highly developed areas in software measurement, with a
large scientific literature.  Many different ways of representing the growth in reliability
have been proposed over the years, but no definitive one has emerged.  However, in recent
years there have become available some powerful techniques that allow the accuracy of the
reliability measures emanating from the testing of a particular program to be judged.  Thus
a user is able to measure reliability and be confident that the measures are accurate.

G.3.3 For software required to meet high levels of safety integrity, however, reliability
growth techniques have two serious limitations.  In the first place, they are only feasible
for measuring reliability when the levels needed are relatively modest, since there is a
strong law of diminishing returns operating: for example, if a mean time to failure of x
hours is the reliability target, then many times x hours on test will be needed before
confidence can be gained that the target has been reached.  Therefore this approach may
only be practical for software with requirements for lower levels of safety integrity.

G.3.4 Secondly, a conservative assumption should be taken that when a fix is carried
out, a new program is created which should be evaluated afresh without using the data
collected from its ancestors.

G.4 Error Free Operation

G.4.1 It is common, when assessing the reliability of SRS, to impose an additional
condition that no known faults be present.  Thus if a failure occurs on test, the fault will
need to be identified and removed, and the software placed back on test until it has
executed for a sufficiently long time without failure for it to be deemed sufficiently
reliable.

G.4.2 Relatively simple statistical techniques can be used to calculate the reliability that
can be claimed for a particular period of failure-free working, under fairly plausible
assumptions.  Thus, for example, in the case of a safety system with a probability of failure
on demand required to be better than 10-3 (this is approximately that needed for a reactor
primary protection system), if the system survives about 5,000 tests then one could be
more than 99% confident that it was good enough.  All that is assumed here is that the
successive demands during test are statistically independent of one another (and, of course,
they are selected with probabilities that are the same as they would be in operational use).

G.4.3 Once again, it needs to be emphasized that the levels of reliability that can be
quantified with confidence in this way are relatively modest.  Thus for a demand-based
system, evidence of  several times 10x failure-free demands will be needed before a claim
that the probability of failure upon demand is better than 10-x can be justified with a high
degree of confidence.  There are similar limits to what can feasibly be claimed for
continuously operating systems, such as control systems: for example it  has been shown
that if a system has survived t hours of operation without failure, there is only a 50:50
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G.4.3 (Cont)

chance of it surviving a further t hours. These limits are based, of course, upon certain
assumptions about the failure processes - such as independence of successive demands,
and "purely random" failures in the continuous case, but these are reasonably plausible.
Even if these assumptions are not exactly correct, it seems clear that the arguments used
give results that are "order of magnitude" right.
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Process Safety Analysis Examples

H.1 Introduction

H.1.1 The examples used in this appendix are based on an MOD project called
SHOLIS (Ship Helicopter Operating Limit Instrumentation System) which is
developing safety-critical software to the full requirements of 00-55/1 (April 1991).

H.1.2 SHOLIS is a real-time system designed to enhance the safety of
shipborne helicopter operations.  SHOLIS integrates ship heading and motion data with
information concerning the helicopter and ship characteristics to determine if current
operating conditions are within safe limits.  If operating conditions are unsafe then
audio-visual alarms are raised.

H.2 Process Safety Analysis and the SHOLIS Software Safety Case

H.2.1 This section shows how process safety analysis is used to generate the
evidence needed to support claims made in the Software Safety Case about the
adequacy of the software development process.

H.2.2 The safety argument in figure H.1 consists of a single top-level claim
(sil_claim) which is refined into a hierarchy of sub-claims.  The lowest level sub-
claims, herein called ‘base claims’, are then justified by reference to evidence or
assumptions.  The evidence that can be used to support base claims is detailed in
annexes G and J.

H 2.3 The top-level claim is that the SHOLIS safety-critical software achieves
Safety Integrity Level 4; this is shown to be dependent upon the validity of three sub-
claims:

(a) safe timing behaviour is exhibited (timing);

(b) safe functional behaviour is exhibited (func);

(c) there is always enough memory available for continual operation (mem).

H.2.4 These sub-claims are joined by an AND-gate indicating that the top-level
claim depends on all three sub-claims being valid.

H.2.5 For illustrative purposes figure H.1 only develops the claim for safe
functional behaviour. The memory and timing claims are not developed but it should be
noted that a real safety case must refine these claims fully.

H.2.6 The claim of safe functional behaviour is shown by figure H.1 to be
dependent on the validity of either of the following sub-claims:

(a) correctness by construction ensures safe functional behaviour
(func.safe_construction);

(b) testing demonstrates safe functional behaviour (func.safe_testing).
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H.2.7 These sub-claims are joined together by an OR-gate which indicates that
the sub-claims are held to be independent and each is sufficient in its own right to
justify the higher level claim.  In order to justify this position, it is necessary to show
that the two sub-claims are independent of one another.  Common mode failure analysis
which will be described later in this annex is one approach to investigating the
independence of different claims.  Note that it is at this level of the claim structure
where the requirement in Part 1 of this Standard for two or more diverse safety
arguments is satisfied by the SHOLIS Software Safety Case.

SHOLIS safety-critical
software achieves SIL 4.

(sil_claim)

AND

safe functional behaviour
exhibited

(func)

OR

always enough memory
available
(mem)

safe timing behaviour
exhibited
(timing)

software construction
processes are adequate

(func.
safe_construction.process)

construction by correctness
ensures safe functional

behaviour
(func.

safe_construction.product)

correctness by construction
ensures safe functional

behaviour
(func.safe_construction)

AND

testing process is adequate
(func.safe_testing.process)

testing results demonstrate
safe functional behaviour

(func.
safe_testing.product)

testing demonstrates safe
functional behaviour
(func.safe_testing)

AND

Figure H.1 : Claim Structure of part the SHOLIS Software Safety Case
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H.2.8 Figure H.1 shows both the func.safe_construction and
func.safe_testing claims as being dependent on two more detailed sub-claims:  one
concerned with evidence of the safety of the product gathered from carrying out
software construction or testing activities; the other concerned with the adequacy of the
process that gives rise to the evidence.  The need for a combination of both product and
process claims is best illustrated by example.  The claim func.safe_construction is
based, mainly, on the use of formal methods and static analysis to ensure correctness by
construction.  However, if, for example, a tool used to assist the static analysis was
flawed then the analysis results may be valueless, consequently, a second sub-claim is
required that the process by which the analysis was performed was itself adequate, ie
the sub-claim func.safe_construction.process.

H.2.9 The claims at the bottom of figure H.1 can be described as ‘base claims’
insofar as the SHOLIS Software Safety Case does not refine them further in order to
keep the length of the example short.  It is important to stress that in practice further
refinements of the claim structure should be carried out to provide a more convincing
safety argument.

H.2.10 Once the base claims have been identified, the next objective is to provide
evidence to substantiate them.  If each base claim can be substantiated then an argument
for the validity of the overall top level claim can be made.

H.3 SHOLIS: Process Definition

H.3.1 Introduction

H.3.1.1 The first stage of process safety analysis is the production of a process
definition via some form of process model.  One possible approach to process definition
will now be introduced using the SHOLIS project for illustration.  Note that the full
process definition for SHOLIS is not given here as it is too large to use as an example.
Rather, a complete vertical slice of the project has been taken by examining a single
SHOLIS development activity.  The full SHOLIS process definition would be produced
by repeating the steps for all project activities.

H.3.1.2 The process model should capture the important characteristics of the
development process while not becoming subsumed in huge amounts of detail.  The
process model should:

(a) capture inputs and output;

(b) capture resources (eg tools, methods);

(c) capture the role of human beings;

(d) reveal the process dynamics, for example if a process contains a high degree of
iteration or parallelism then the model should show this.
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H.3.1.3 The example given (see figure H.2) here uses a combination of Role
Activity Diagrams (RADs), Data Flow Diagrams (DFDs) and support tables (taken
from the IDEF0 method)

DFD

1

2

RAD: 1 RAD: 2

Support Table: 2

a b

Support Table: 1

Figure H.2:  Modelling Approach

H.3.1.4 A data flow notation is used to present a high-level model of the whole
development process; this provides an easy to understand entry point into the process
definition.

H.3.1.5 RADs are used to provide a more detailed model of individual processes
and to capture process dynamics (eg iteration).  The RADs refine the DFD by
decomposing high-level development activities into a set of more detailed activities;  an
alternative approach would be to perform the decomposition using lower level DFDs.

H.3.1.6 RADs do not easily capture the resources used by processes (eg tools and
methods) and therefore each RAD has an associated support table to capture these
aspects.  The RADs map directly to the support tables via activities.  Thus for each
activity shown on a RAD there is corresponding support table entry.
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H.3.1.7 The data flow notation, RADs and the support tables will now be
described in more detail together with examples from SHOLIS.

H.3.1.8 It should be noted that the techniques used here are chosen for
illustrative purposes only.  Other techniques which meet the analysis objectives may be
used instead.

H.3.2 Data flow diagrams

H.3.2.1 The first element of the SHOLIS process definition is a high-level DFD;
see figure H.3.  The data flow model was produced by consulting the various project
plans and discussing the development process with project staff.

H.3.2.2 The data flow notation used depicts development and checking activities
as rounded boxes and software products as rectangles.  Arrows indicate information
flow.

H.3.2.3 Only one DFD is drawn in order to provide a high level model of the
entire process, and consequently not all activities are shown.  For example the SHOLIS
project has a number of separate safety analysis activities, eg FMEA and FTA, and
these are shown as a single activity “safety analysis” on the DFD.  The RAD associated
with “safety analysis” then decomposes this activity into “produce FMEA”, “produce
FTA”  and so on.
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Figure H.3 : SHOLIS Development Process
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H.3.3 Role Activity Diagrams

H.3.3.1 The high-level DFD is refined using a RAD to capture more detailed
activities and process dynamics.  An example of this modelling step is now given using
the development activity “Produce Software Specification”;  the RAD for this activity is
shown in figure H.4 and a key for the RAD symbols can be found in table H.1.

H.3.3.2 For a process (at any given level of abstraction) a RAD shows the roles,
their component activities and interactions together with external events and the logic
that determines what activities are carried out and when.

H.3.3.3 The Software Specification (SS) specifies the requirements for the
SHOLIS system.  The SS has the following components:

(a) Z specification of the software functionality;

(b) supporting English narrative;

(c) specification of the MMI.

H.3.3.4 The RAD shows two roles involved in producing an issue of the SS: the
Project Manager and the SS Team.  The RAD shows the Project Manager’s role as
simply to assemble the team; this modelled as the interaction SS team starts.  Obviously
the Project Manager will monitor the progress of the SS Team on a regular basis,
however, such interactions are considered outside the scope of this process model.  The
SS Team role can be viewed as having two main threads of activity: the new issue
thread and the delta thread.

H.3.3.5 The new issue thread involves those activities necessary to produce the
next issue of the SS against some set of requirements (or review actions in the case
where an issue is being produced as a result of a formal review).  The RAD shows the
new issue thread starting when the go-ahead is received by the SS Team to produce a
new issue of the SS, this being modelled by the external event New issue of SS
required.  The exact nature of the go-ahead will vary depending on why the new issue is
required, for example it could be the arrival of a new requirements document or as a
result of a formal review.

H.3.3.6 The delta thread involves those activities that handle asynchronous
events which have an impact on the SS, for example a change request or a fault report;
this thread is not considered further in the this document due to space limitations but
would be fully analysed in practice.
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H.3.3.7 When the new issue thread starts, ie when a new issue of the SS is
required, four parallel activities are shown as starting:

(a) Do tracing

(b) Do Z model

(c) Do narrative

(d) Do type H check

H.3.3.8 The RAD shows that eventually the tracing, Z, narrative and type
checking activities complete for a given issue of the SS and it is issued (Issue SS) to
relevant parties.  Who makes up the “relevant parties” is shown by the RAD to depend
on the Purpose of the SS.  The SS may have more than one purpose, for example it
could be distributed to the formal review team and to others for information only.

Table H.1 : RAD Symbol Key

Symbol Meaning

State description

Interaction starting a role

Activity

External event

Parallel activity

Decision
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Figure H.4: SHOLIS process model - RAD for Produce Software Specification
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H.3.4 Support Tables

H.3.4.1 The RAD for “Produce Software Specification” identifies the more
detailed development activities that take place in order to produce the specification.
However, the RAD does not show any information regarding the resources that support
these lower level activities.  The support tables provide this information.

H.3.4.2 One support table is required for each role identified on a given RAD.
Therefore there are two support tables for “Produce Software Specification”:  one for the
Project Manager role and one for the SS Team role.

H.3.4.3 Within a support table there is one entry for each activity within a role.
Table H.2 illustrates what a support table entry details for a given activity.

Table H.2 : Support Table Contents

Support Table Entry Description

Activity The name of the activity on the RAD to which the entry refers.

Inputs The input to the activity, for example specifications or test results.

Tools Computer-based tools to support the transition from the input to the output

Methods Documented procedures/notations to support/enable the transition from input to
output.

Checks Fault detection measures outside of the activity.

Human Tasks The role of human beings in supporting/enabling the transition from input to output.

Outputs The outputs from the activity, for example a design, or executable code.

H.3.4.4 Extracts from the support table for the SS team role of the “Produce
Software Specification” process are given in table H.3.
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Role: Software Specification (SS) Team

Activity Inputs Tools Methods Checks Human Tasks Output

Do_tracing SSTR, SEA, SIP, OS

(see annex H for
abbreviations)

tracing tool in
perl emacs

DCOP Chap 2 formal review,
IV&V checks, testing,
safety analysis

extract requirements from
inputs

SS: traceability
matrix

Do_Z_model SSTR, SEA, SIP, OS emacs, LaTex Z notation as
defined in Spivey
2 (Z), DCOP
Chap 4, Praxis Z
standard,

formal review, output
from Do_type_check,
proof, testing, safety
analysis

expression of
requirements in Z

SS: Z model

Do_narrative SSTR, SEA, SIP, OS,
Z model

emacs, LaTex DCOP Chap 4 formal review, IV&V
checks, testing, safety
analysis, resource and
timing modelling

express Z model in
English, express aspects
of system not captured in
Z for example scheduling

SS: narrative explains
Z model and
describes
requirements not
specified in Z

Do_type_check Z model in LaTex fuZZ fuZZ manual,
DCOP Chap 4

formal review, IV&V
check, proof, testing

start type check, review
results

SS: type check results

Do_� �, Do_tracing,
Do_Z_model,
Do_narrative,
Do_type_check

Do_tracing,
Do_Z_model,
Do_narrative,
Do_type_check

Do_tracing,
Do_Z_model,
Do_narrative,
Do_type_check

union of :Do_tracing,
Do_Z_model,
Do_narrative,
Do_type_check

take account of � in all
activities

SS: updated with �

Issue_SS SS doctools CM Plan enter config info -
including SS - into doc

baselined SS

Table H.3 : Extract from: Support Table - Produce Software Specification - SS Team
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H.4 SHOLIS: Process Hazard Identification

H.4.1 Having modelled the SHOLIS development process, the next stage is to
identify the process hazards against which the hazard analysis should be performed.

H.4.2 A subset of the process hazards identified for SHOLIS is listed in table
H.4. These were identified using both a check list and the first level safety case claims -
of which a subset are shown in figure H.1.  For example, the first level claim ‘safe
functional behaviour exhibited’ was re-worded to become the process hazard ‘hazardous
functional fault in operational software’.

H.4.3 The completeness of the hazard list can be checked by ensuring that each
and every software safety requirement maps to at least one of the process hazards.  For
example, consider the following SHOLIS safety requirements:

(a) Requirement 1: A roll  alarm shall be raised if the input sensor value is valid and
outside the roll limit, or if the input sensor value is invalid.

(b) Requirement 2: The emergency page shall be re-calculated every 3 minutes.

Requirement 1 is clearly functional in nature and is therefore covered by the process
hazard haz.func.  Requirement 2 is concerned with both functional and timing behaviour
and is therefore covered by the process hazards haz.func and haz.timing.  If a safety
requirement was found not to be covered by any process hazard, then it must be
concluded that the process hazard list was incomplete and corrective action must be
taken.

Table H.4 : Process Hazards

Reference Hazard Description

haz.func hazardous functional fault in operational software

haz.timing hazardous timing fault in operational software

haz.mem not enough memory available
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H.5 SHOLIS: Process Failure Analysis

H.5.1 Introduction

H.5.1.1 Process failure analysis involves carrying out three related analyses:
process failure mode analysis, cause-effect analysis and common mode failure analysis.

H.5.1.2 A Failure Modes and Effects Analysis (FMEA) has been used to perform
process failure mode analysis.  The results of the FMEA are then summarised in a
coverage matrix which shows which checks are applied to each development activity.
The coverage matrix combined with the FMEA provide two contrasting levels of failure
analysis.  The matrix is an aid to the evaluation of the overall process.

H.5.1.3 Cause-effect analysis is performed by taking the results of the FMEA and
relating them to the various process hazards by means of Fault Tree Analysis (FTA).
Fault trees allow an assessment of the causes of and defences against each process
hazard, and they enable a comparison to be made between the level of defences provided
for different process hazards.

H.5.1.4 Common-mode failure (CMF) analysis has been performed by reviewing
the SHOLIS FMEA and FTA, and producing tables showing the identified sources of
CMF together with associated safety arguments.

H.5.1.5 Each of these steps will now be described in more detail.

H.5.2 Failure modes and effects analysis

H.5.2.1 FMEA analysis traditionally considers component failures, and it is
therefore necessary to have some notion of what constitutes a ‘component’ in the context
of a software development.  The main software development activities (eg produce
software specification) will constitute the components for the purposes of this analysis.

H.5.2.2 When considering software development activities it is useful to
distinguish between:

(a) Development activities.  These are activities that give rise to software products (ie
objects that are, or transform into, the final product).

(b) Checking activities.  These are activities that check the correctness and/or
completeness of software products.  Thus proof and unit testing are examples of checking
activities.  Additionally software safety analysis is considered a checking activity as it is
essentially validating and verifying the safety requirements.

(c) Infrastructure activities.  These support the various development and checking
activities.  Thus configuration management and fault management are examples of
infrastructure activities.
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H.5.2.3 The FMEA components are therefore the development, check and
infrastructure activities that form the development process.  Identification of the activities
fitting into the above categories can be done by examining the process definition; a subset
of the SHOLIS development, check and infrastructure activities are listed in table H.5.
The FMEA proceeds by completing a worksheet for each of the identified activities.

Table H.5 : SHOLIS activities

Activity Type Activity

Development Produce software specification

Produce software design

Checking Formal Review

IV&V miscellaneous checks (including tracing)

Proof (Z and SPADE)

Functional Failure Modes and Effects Analysis

Infrastructure Configuration Management

Change Management

H.5.2.4 The FMEA components (ie activities) are functional entities and therefore
the level at which they are defined can be determined by the analyst.  Consequently the
detail in the FMEA, and therefore the effort required to produce it, can be altered by
changing the level at which the activities are defined.  Diminishing returns will apply
beyond a certain level of detail.

H.5.2.5 The SHOLIS FMEA analysis is recorded on a series of worksheets,
extracts of which can be found in annex M.  The worksheets provide the following
information:

(a) the activity name;

(b) the inputs and outputs of the activity;

(c) the resources that enable the activity to be performed, for example tools, methods,
staff;

(d) the failure analysis for the activity, ie the FMEA proper.

H.5.2.6 All but the failure analysis can be filled in directly from information
contained within the SHOLIS process definition.

H.5.2.7 The information provided by the failure analysis will now be considered in
detail; the reader is advised to consult annex M whilst reading this annex.
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H.5.2.8 The first column of the failure analysis captures the activity failure modes.
Development activities and infrastructure activities are characterised by the following
generic failure modes:

(a) Input fault not detected.  A development example would be a design activity not
detecting an error in the input specification thereby leading to a defective design; thus the
input fault is carried forward to the output.

(b) Transformation fault.  Where a mistake, human or otherwise, results in an
incorrect transformation from input to output.  A development example would be a
compiler error causing a discrepancy between the source and object code.  An
infrastructure example would be a change management system failing to correctly
identify items affected by the proposed change.

H.5.2.9 Checking activities have a single generic failure mode:

(a) Input fault not reported.  That is, where a fault in the input is not detected and/or
reported, for example where a type checker fails to report a type mismatch in a formal
specification.

H.5.2.10 An alternative approach to using the above generic failure modes would
be to use a checklist of fault types, for example: incomplete and inconsistent syntax.

(a) The failure analysis then captures the causes of each of the generic failure modes.
The approach used is to identify each of the resources that support a given activity and
consider how each resource could fail so as to give rise the relevant generic failure
modes.

(b) Identification of the causes of each generic failure is assisted by the use of
HAZOPS-like guidewords which are applied to the purpose of each resource.  The
guidewords used together with example deviations are given in table H.6.

Table H.6 : Guidewords

Guideword Example Deviation

PART OF Requirement partially modelled

AS WELL AS Additional requirement modelled

OTHER THAN Something completely different modelled.

NO/NOT Requirement omitted.
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H.5.2.11 The failure analysis continues by showing the end effect of the failure-
cause combination.  The end effects are one or more of the process hazards listed in table
H.4.  For example, the SHOLIS software specification models the software functional
requirements in Z and other non-functional software requirements - such as timing -
informally in the narrative.  Resources associated only with the Z can only give rise to
functional faults in the final delivered object code, ie they can only cause haz.func.   In
contrast, if the engineers writing the specification are responsible for modelling the Z and
expressing timing requirements in the narrative, then they could cause both functional
and timing faults in the final system, ie they could cause both haz.func and haz.timing.

H.5.2.12 At this point in the failure analysis, failure modes and possible causes of
them have been suggested for each of the identified ‘components’.  The next step of the
failure analysis is to identify the defences against each failure-cause combination.
Defences for development, checking and infrastructure activities fall into two categories:

(a) fault detection measures: actions taken to detect faults, for example proving a
specification;

(b) fault avoidance measures: actions taken to avoid faults in the first place, for
example using proven tools and competent staff.

H.5.2.13 The final information captured by the failure analysis is to state or
reference evidence to support the arguments made for the various defences.  For example,
a fault avoidance measure against human error may be the use of appropriate staff.  Such
a defence requires supporting evidence such as references to CVs and training records.
Evidence is not referenced to support fault detection measures, since the safety argument
for a given fault detection measure is already, or will be, provided the FMEA conducted
on it.  For example, if one of the defences against a specification error is ‘Proof’, then an
examination of the FMEA conducted on the ‘Proof’ activity will show:

(a) the failure modes of the proof activity;

(b) the fault detection measures that are in place, for example the reviews carried out
on the proof;

(c) the fault avoidance measures that have been taken, for example, the competence
of the staff involved.

H.5.2.14 Such information should enable an evaluation to be made as to how
adequate a defence ‘Proof’ is likely to be against a specification error.

H.5.2.15 Much of the evidence to support the various defences can be reused and
therefore an Evidence Library has been used; this contains claims which are supported by
direct or referenced evidence.  The FMEA uses the Evidence Library by references of the
type evi_lib.xxxx in the evidence column.  An extract from the SHOLIS Evidence Library
can be found in annex K.
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H.5.3 Coverage matrix.  Table H.7 provides a summary of the checks (fault
detection) that are applied to each of the software products.  When considering the table
care should be taken to consider the relative strength and scope of the various checks:
some checks may have very wide scope but have a low detection rate, eg formal reviews;
others may have limited scope but a very high detection rate, eg automated syntax and
type checking.

H.5.4 Fault tree analysis

H.5.4.1 Fault tree analysis can be used to make clear which process failures and
which defences are relevant to the various process hazards.  See annex K for an example.

H.5.4.2 Developing a fault tree for each process hazard will enable a comparison
to be made between the level of defences put in place to prevent them.  So, for example,
if a system had hard timing requirements then one would expect to see a similar level of
defence against haz.timing as for haz.func; fault tree analysis enables such an
assessment to be made relatively easily.

H.5.5 Common mode failure analysis

H.5.5.1 The defences against a given process hazard should be evaluated for their
susceptibility to common mode failure (CMF).

H.5.5.2 CMF analysis can be performed by a combination of some or all of:

(a) examining the results of failure analysis, for example FMEA;

(b) a brainstorming session to identify common points of failure, for example a
HAZOP type study;

(c) reviewing the results of Fault Tree Analysis.

H.5.5.3 Table H.8 shows some of the common cause failures that affect the
func.safe_construction and func.safe_testing claims.  Note that references to the
Evidence Library are used in the same way as in the FMEA.
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Table H.7 : Coverage Matrix

Software Product Fault Detection Measure

formal
review
 (D)

IV&V misc
checks
(I)

syntax and
type check
(ID)

proof
(ID)

static
analysis
(ID)

resource
analysis
(D)

unit testing
(I)

integration
testing  (I)

system
integration
testing (I)

system
validation
testing (I)

acceptance
testing (IC)

Statistical
Testing (I)

software specification

software design
specification

Ada package specifications

Ada package bodies

target object code

executable

KEY Check not applied to software product I Performed/Checked by independent team

Check only applied to safety attributes D Performed/Checked by development team

Check applied to all (relevant) attributes C Performed/Checked by Customer
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 Table H.8 :  CMF Analysis Examples

Common Cause Effect Safety Argument

The software requirements
specification is the basis for
both software development
and system validation testing.

A fault in this specification (eg
specification of the wrong
requirements) would affect the
validity of the results of both
analysis and testing.

� Phase 1 of the SHOLIS project was a
wide ranging and detailed requirements
validation exercise.  The assessment tests
involved experienced Royal Navy
personnel.

� The application domain of SHOLIS is
well understood and manual systems
have been in place over a long period.

All software development
products are configured using
the same systems.

Should an incorrect version of any
configuration item be supplied by
the configuration management
system, the value of any analysis
or tests on that item are
undermined.

� evi_lib.config_man
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Process Evidence

J.1 Introduction

J.1.1 Part 1 of this Standard calls for a justification of the software development process.
This is achieved, in part, by performing a safety analysis on the software development process
and this is covered in .4.

J.1.2 During process safety analysis various detailed claims will be made about the software
development process and these claims will need to be supported by evidence.  This appendix
discusses the different forms of process evidence that can be used to support such claims.

J.1.3 Guidance on the collection and presentation of process evidence is split into three
topics:

(a) Staff Competency - Evidence should be supplied that all staff working on developing
and maintaining SRS are competent and have the appropriate skills, qualifications, experience
and training.

(b) Methods - The suitability of the specification, design, coding and testing methods.
Evidence might include successful use on previous projects.

(c)Tools - The fitness for purpose of the tools used on the project.  Particular attention should
be paid to compilers and configuration management tools.  Evidence may take the form of
tool evaluations possibly using established assessment suites.

J.2 Staff Competency

J.2.1 Staff competency should be demonstrated to ensure that all staff developing and
maintaining SRS have an appropriate level of relevant experience, are properly trained,
suitably qualified and have the necessary skills to carry out their tasks on the project.

J.2.2 An appraisal of staff competency should be carried out and included in the Software
Safety Case.  Evidence should show that individuals do have the necessary attributes
described above.  Particular attention should be paid to assessing and providing evidence
about the key members of the software development team.

J.2.3 Pending the results of the Health and Safety Executive sponsored Competencies
Study, the British Computer Society Industry Structure Model (ISM) may be a useful guide.
The ISM is a set of performance standards designed to cover all functional areas of work
carried out by practitioners and professionals in the computer industry.  It provides a set of
guidelines to define training needs for career development and a set of performance criteria
against which experience and training  can be assessed and is intended for use by both
employers and employees.

J.2.4 Evidence should be collected for each member of the project team of their role, grade
and a summary of their training, qualifications and experience specifically relevant to their
role on the project.  Up-to-date CVs should be maintained.
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J.2.5 Details of project specific training that is either planned or has been carried out should
be included as evidence.  Changes of any key member of staff during a project should also be
recorded and a justification provided to show that the effects of the change have been
considered and appropriate action (eg a suitable handover period) taken.

J.3 Methods

J.3.1 Evidence is required to justify the use of the software development methods used to
develop the SRS.  The following should be considered during the process of selecting a
method:

(a) compliance with the requirements of this Standard;

(b) the cost and availability of tool support;

(c) the availability of training and expert help in using the method (if necessary);

(d) the amount and depth of experience that the software development team have in the
method;

(e) the readability and understandability of the notations used by the method;

(f) the maturity of the method (eg commonly practised, becoming increasingly practised,
rarely practised, not practised);

(g) whether the method has been used successfully by the supplier or others in industry
for similar systems of at least the same integrity level;

(h) the power of the method (in terms of its ability to express, model, check or analyse the
problem at hand);

(i) the compatibility between the method and the other methods and tools used by the
project.

J.3.2 Information on the above aspects should be used as evidence in the Software Safety
Case to support the justification of the methods used.

J.4 Tools

J.4.1 Part 1 of this Standard requires a justification of the tools used to develop the SRS
with respect to the effects of possible faults in them on the safety integrity of the SRS.

J.4.2 It is important to provide evidence for transformational (eg compilers, linkers,
optimises and loaders) and infrastructure tools (eg configuration management tools) as
failures of these tools may introduce faults directly into the software.
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J.4.3 The types of evidence that should be collected about a tool are:

(a) the results of evaluation tests or trials performed on the chosen tool and other
candidate tools, if any.  The evidence should contain a list of the criteria used in the
tests/trials; detailed results of any trials carried out and the justification for the choice of a
particular tool;

(b) the results of assessments of the quality of the chosen tool.  The assessment evidence
should contain a summary of the quality standards to which the tool was developed; detailed
results of quality audits carried out on the tool supplier (including any specific quality
standards);

(c) an analysis of the possible faults in the tools and their effects on safety plus a
summary of any measures taken to reduce or remove the effects of these faults;

(d) a list of faults in the chosen tool, whether these faults have been fixed and, if not, how
the effects of the faults have been avoided eg avoiding certain language constructs;

(e) experience of using the tool on previous projects.

J.4.4 The guidance and requirements of RTCA/DO-178B with respect to Tool Qualification
may be found useful as an approach to gathering the necessary evidence.

J.4.5 Particular attention should be paid to the assessment and evaluation of the compilation
system.  Consideration should be given to evaluating the compiler by using:

(a) compiler evaluation test suites;

(b) commercially available compiler test tools.

J.4.6 The run-time system on which the program will execute on the target computer should
also be subject to evaluation.  Some compiler vendors provide special versions of run-time
systems which are certified or allow third-party evaluation to be undertaken.
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SHOLIS Evidence Library

K.1 The purpose of the Evidence Library is to develop reusable claims regarding the
suitability of methods, tools and staff.  These claims are supported by evidence which is
presented directly or referenced.  Table K.1 contains a sample of the claims referenced from the
SHOLIS FMEA worksheets.
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Table K.1 : Extract from SHOLIS Evidence Library

Evidence Ref Applies to Claim Evidence
evi_lib.z Method: Z Z is a mature and

sound notation
suitable for the
formal
specification of
complex systems.

The formal semantics for Z have been
partially defined by Spivey (1987) and the
Z ISO standard working group are
currently defining the full formal
semantics of the language.
Z can be considered proven-in-use having
been used on a large number of industrial
and research projects.
Z has been used on many  Praxis projects
including : 204, 213, 243, 307, 343, 352,
364

evi_lib.emacs Tool:
emacs

emacs is a
suitable general
text editor for use
on projects
developing
safety-related and
safety-critical
systems.

Emacs is widely used within Praxis and is
considered as robust as any comparable
text editor.  It is the most widely used text
editor on Unix platforms and has been
widely ported to others.  Emacs is well
documented, see manual in SHOLIS
project file.

evi_lib.fuzz Tool:
fuZZ

fuZZ is a mature
tool and highly
effective at the
detection of
syntax and typing
errors in Z.  The
reports produced
by the tool are
easy to
understand and
unambiguous.

Tool produced by J.M.Spivey author of
the defacto Z reference manual.
The tool has been in use since 1988 and
has a medium sized user base.  The tool is
used for the syntax and type checking of
all Z formal specifications in Praxis.
The tool has been used on many Praxis
projects including: 204, 213, 243, 307,
339, 343, 352 and 364.
All error messages produced by the tool
are listed in the fuZZ manual together
with reference to the relevant language
rule (as defined in Spivey2) that has been
broken.

evi_lib.staff.ano Staff:
A.N.Other

A.N.Other
possesses the
appropriate skills
and experience to
specify and prove
complex systems
formally.

A.N.Other is an experienced formal
methods practitioner with experience of
writing formal specifications in Z for
defence, avionics and rail projects.
A.N.Other has a BSc(Hons) in
Computation and Mathematics and is a
member of the Z standards working
group.
A.N.Other is a BCS Level 6 practitioner.
For more details consult the relevant CV
in the SHOLIS project file.
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Fault Tree Analysis

L.1 Part of the fault tree analysis for process hazard haz.func is now given.

operational software
contains hazardous

functional fault

OR

hazardous functional fault
in user requirements not
detected during software

specification activity

hazardous fault in
software specification

carried forward to
operational software

OR

hazardous functional fault
introduced by imperfect
transformation from user
requirements to software

specification

1

testing of
operational software fails

to detect hazardous
functional fault

haz.func

AND

hazardous fault in
software specification

carried forward to
operational software

hazardous fault in Ada
package specifications

carried forward to
operational software

hazardous fault in Ada
package bodies carried
forward to operational

software

hazardous fault in target
object code carried

forward to operational
software

hazardous fault in
executable carried

forward to operational
software

Figure L.1  Fault Tree Analysis for haz.func (1)
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hazardous functional fault
introduced by imperfect
transformation from user

requirements to
softwares specification

OR

tool failure

OR

1

emacs

AND

part/all of spec corrupted fault detection measures
fail

AND
formal review
IV&V checks

syntax and type check
proof

testing
safety analysis

perl_trace_tool

AND

requirements not
captured in matrix or

incorrect mapping within
matrix

fault detection measures
fail

AND

formal review
IV&V checks

acceptance testing

methods failure human error

LaTex

AND

LaTex corrupts all/part of
spec

fault detection measures
fail

AND
formal review
IV&V checks

acceptance testing
safety analysis

Figure L.2  Fault Tree Analysis for haz.func (2)
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SHOLIS: FMEA Worksheets

M.1 Introduction

The SHOLIS FMEA worksheets are divided into two sub-sheets.  The first sheet, the header,
details activity information such as inputs, outputs and resources used.  The second sheet, the
body, details the actual failure analysis.
The distinction between fault avoidance and detection measures is shown as follows:

■ - fault avoidance   - fault detection
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Table M.1:  FMEA Worksheet Extract: Produce Software Specification Header

SHOLIS FMEA Worksheet - HEADER Activity: Produce Software Specification Type: Development
Inputs Statement of System Technical

Requirements (SSTR)
Output Software Specification

System Elements Analysis (SEA)
System Implementation Plan
(SIP)
Operational Specification (OS)
Software Hazard Analysis Report

Resources
Tools Methods Checks Human Role
emacs Design Codes of Practice formal review Extract requirements from inputs.
LaTex Z notation IV&V misc checks Express functional  requirements

in Z
perl_trace_tool syntax and type check Express non-functional

requirements
proof Explain Z model in English
acceptance testing
back-to-back testing
safety analysis
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Table M.2  FMEA Worksheet Extract: Produce Software Specification

SHOLIS FMEA Worksheet - BODY Activity: Produce Software Specification Type:
Development

Ref Failure Mode Cause End Effect Defences/Measures
■ - fault avoidance       - fault
detection

Evidence

0005 Input fault not
detected.

Method: DCOP: inadequate
formalization of non-
functional requirements
results in faults in non-
functional requirements not
being detected.

haz.timing
haz.mem
haz.op

1  formal review
2  IV&V checks
3  acceptance testing
4■ close mapping from  Z to MMI
description
5■ close mapping from Z to
performance reqs
6  safety analysis

4■ see DCOP section 4
5■ see DCOP section 4

0010 Method: DCOP: inadequate
formalization of functional
requirements results in fault in
requirements not being
detected.

haz.func 1  formal review
2  IV&V checks
3  acceptance testing
4■ modelled in Z
5  safety analysis

4■ evi_lib.Z

0015 Method: Z: inappropriate
specification language for the
application leading to faults in
the requirements being missed.

haz.func 1  formal review
2  IV&V checks
3  acceptance testing
4■ Z appropriate for SHOLIS type
system
5  safety analysis

4■
evi_lib.Z.system_types



DEF STAN 00-55 (PART 2)/2
ANNEX M

M-4

Table M.2 (Cont)

Ref Failure Mode Cause End Effect Defences/Measures
■ - fault avoidance       - fault detection

Evidence

0020 Human: engineer fails to spot
inconsistency/ambiguity/incom
plete nature of requirements.

haz.all 1  formal review
2  IV&V checks
3  phase I assessment testing
4  acceptance testing
5■ expert author
6■ formalization, ie modelled in Z
7  safety analysis

5■ evi_lib.ano
6■ evi_lib.Z

0025 Imperfect
transformation
from input to
output.

Tool: emacs:  corrupts part/all
of specification

haz.all 1  formal review
2  IV&V checks
3  syntax & type check
4  proof
5  acceptance testing
6■ emacs considered proven-in-use
7  safety analysis

6■ evi_lib.emacs

0030 Tool:  LaTex:  corrupts
part/all of specification

haz.all 1 to 5 as above
6■ LaTex considered proven-in-use
7  safety analysis

6■ evi_lib.latex

0035 Tool: perl_trace_tool:
requirements not captured  in
matrix, incorrect mapping in
matrix

haz.all 1 IV&V checks
2  formal review
3  acceptance testing
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Ref Failure Mode Cause End Effect Defences/Measures
■ - fault avoidance       - fault detection

Evidence

0040 Method: DCOP: inadequate
checks on requirements
coverage

haz.all 1  IV&V checks
2  formal review
3  acceptance testing
4■ SS review checklist includes  checks
on: reqs coverage, justification of
omissions and correct labelling of trace
units

4■ see DCOP
appendix A

0045 Method: DCOP: inadequate
formalization of non-
functional requirement

haz.timing
haz.mem
haz.op
haz.mainta
in

see 0005

0050 Method: DCOP: inadequate
formalization of functional
requirements

haz.func see 0010

0055 Method: Z: notation flawed
leading to ambiguous model

haz.func 1  formal review
2  IV&V checks
3  proof
4  acceptance testing
5■ Z considered sound
6  safety analysis

5■ evi_lib.Z
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Table M-4 (Cont)

Ref Failure Mode Cause End Effect Defences/Measures
■ - fault avoidance       - fault
detection

Evidence

0060 Method: Z: inappropriate
notation for application
leading to difficult to model
requirements.

haz.func 1 to 4 as above
5■  Z appropriate for SHOLIS
type system
6  safety analysis

5■
evi_lib.Z.system_typ
e

0065 human: engineer fails to model
requirement or models
additional requirement

haz.all 1  formal review
2  IV&V checks
3  acceptance testing
4■ use of perl_trace_tool
5■ expert author
6  safety analysis

4■ TBD
5■ evi_lib.ano

0070 human: engineer  specifies
non-functional requirements
incorrectly

haz.timing
haz.mem
haz.op
haz.mainta
in

1  formal review
2  IV&V checks
3  acceptance testing
4■ expert author
5  safety analysis

4■ evi_lib.ano

0085 human: engineer specifies
functional requirements
incorrectly

haz.func 1 to 4 as above plus
5  syntax and type check
6  proof
7  safety analysis
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Error! AutoText entry not defined.Abbreviations

N.1 ALARP As Low As Reasonably Practicable
N.2 CMF Common mode failure
N.3 COTS Commercial Off-The-Shelf
N.4 ISM Industry Structure Model
N.5 IV&V Independent V&V
N.6 MOD Ministry of Defence
N.7 RAD Role Activity Diagrams
N.8 RTCA Radio Technical Commission for Aeronautics
N.9 SRS Safety-related software
N.10 V&V Verification and Validation
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Requirements for Safety Related Software in Defence
Equipment

Annexes E through M

Guidance on the Development of a Software Safety Case

Note:  This document has not passed through a full consultative process. It provides
guidance on a particular approach to the development of a Software Safety Case
which satisfies the requirements of Part 1 of this Standard.
Any comments on its contents or recommendations for improvement should be sent to
Stan Ops 2, Ministry of Defence, Directorate of Standardization, Kentigern House, 65
Brown Street, Glasgow, G2 8EX.
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